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Abstract

Solutions to ever-larger structural optimization problems are desired.

However, computational resources are strained to meet this need. New meth-

ods will be required to solve ever larger problems. The present approaches

to solving large-scale problems involve approximations for the constraints of

structural optimization problems and/or decomposition of the problem into

multiple subproblems that can be solved in parallel. An area of game theory,

equilibrium programming (also know as non-cooperative game theory), can be

used to unify these existing approaches from a theoretical point of view (consid-

ering the existence and optimality of solutions), and be used as a framework for

the development of new methods for solving large-scale optimization problems.

Equilibrium programming theory is described, and existing design techniques

such as fully stressed design and constraint approximations are sho_m to fit

within its framework. Two new structural design formulations are also derived.

The first new formulation is another approximation technique which is a gen-

eral updating scheme for the sensitivity derivatives of design constraints. The

second new formulation uses a substructure-based decomposition of the struc-

ture for analysis and sensitivity calculations. The new formulations are utilized

for problems ranging from a simple ten-bar truss to a 348 design-variable opti-

mization of a high-speed civil transport. Significant computational benefits of

the new formulations compared with a conventional method are demonstrated.
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Nomenclature

Column vectors are generally denoted by lower case symbols typed in boldface.

The notation Of/Oa for an arbitrary scalar f and a vector a = (al,..., an) T

denotes the gradient of scalar f with respect to vector a. This gradient is

expressed as a row vector (i.e., Of/Oa = (Of/Oal,..., Of/Oan)). The notation

0f/0a for arbitrary vectors a and f = (]'1,-.., fro) T denotes the gradient of

vector f with respect to vector a. This gradient is expressed as an m x n

matrix in which the component in column j of row i is given by OfjOaj. The

notation lid denotes the jth component of the vector f_.

a update vector

A cross-sectional area, sometimes (in formulation 4) the set

of 4-tuples used to define compatibility of substructures

A vector of cross-sectional areas

Bj matrices used to define compatible displacements at sub-

structure interfaces

g vector of inequality constraint functions

ey unit vector with length of vector v and having unity for

the j'th entry

f objective function in nonlinear programming

F vector of external nodal forces

h vector of equality constraint functions

k constant of proportionality

K penalty coefficient used in penalized objective function P

o..

Vlll



K,f':

?'n

M

M

n

N

P

R

U

U

V

Wk

W

X, Xi, Xi

Ot

5

A f, Ark

AT

global stiffness matrix for a structural-response prob-

lem, augmented global stiffness matrix for a structural-

response subproblem (see equations (3.28) and (3.34))

number of substructures that would have rigid-body mo-

tions if separated from the rest of the structure, used in
formulation 4

number of EP subproblems, sometimes number of sub-

structures in formulation 4

matrix defining the substructure coordination problem

(see equations (3.29) and (3.36))

number of displacement degrees of freedom

vector of stress resultants within every element of the

structure

penalized objective function (see equation (4.2))

matrix containing substructure rigid-body modes

vector of nodal displacements from a structural-response

problem

vector of nodal displacements orthogonal to rigid-body
modes

vector of design variables for nonlinear programming, or

vector of structural-sizing design variables in equilibrium

programming structural-sizing subproblems

weights used in update subproblem (see statement (3.12))

weight of a structure

vectors of all design variables for equilibrium program-

ming, design variables of subproblem i, and all design

variables except those from subproblem i, respectively

vector of rigid-body mode amplitudes

displacement value

difference quantities used in update equation (3.13)

temperature rise
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vector of Lagrange multipliers for inequality constraints,

sometimes Lagrange multipliers for constraint on com-

patible substructure interface displacements

vector of Lagrange multipliers for equality constraints,

sometimes vector of Lagrange multipliers for constraint

on orthogonality of u nodal displacements with rigid-

body modes

vector of stresses within every element of a structure

Subscripts and Subscripts:

A denotes an approximation of a function

i denotes i'th equilibrium programming subproblem

I denotes interface quantities in design formulation 4

l, u denotes lower and upper bounds, used to denote move

limits

max maximum

rain minimum

new, old new and old values, respectively; used in defining update

subprobIem (3.12)

N denotes functional dependence on stress resultants

s side constraints

T transpose of a vector or matrix

u denotes displacement constraints, or functional depen-

dence on displacements

_r denotes stress and local buckling constraints, or func-

tional dependence on stresses

• denotes an equilibrium programming solution (i.e., the

equilibrium point), an optimal solution, active con-

straints, or Lagrange multipliers corresponding to active

constraints

x



Chapter 1

Introduction

Solutions to ever-larger structural optimization problems are needed as struc-

tural optimization procedures are applied to solve practical design problems

and the analysis models for these structures grow increasingly detailed and

complex. Current applications of structural optimization to large-scale design

problems require significant computational resources. New structural optimiza-

tion methods are required to solve ever-larger problems. The use of a gener-

alized theoretical framework for the development of structural optimization

methods is investigated in the present dissertation.

1.1 Background on Structural Synthesis

Nonlinear mathematical programming (NLP) is now extensively used for a type

of optimal structural design that is called structural sizing. The solution to a

NLP-based, structural-sizing design problem minimizes an objective function,

such as weight, and satisfies a set of design constraints, such as minimum gauge

and local stress limits. This solution is obtained varying a set of structural-

sizing design variables, such as skin thicknesses and stiffener heights, within

their allowable ranges. The original usage of NLP for structural sizing coupled

with finite element structural analyses was due to Schmit in 1960 (see [50] for a
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description of the historical developments). Schmit called his resulting method

structural synthesis. The structural synthesis method had several advantages

over the state of the art at that time (i.e., fully stressed design methods and

simultaneous failure mode methods). These advantages include such features

as: 1) limits on member sizes were easily incorporated; 2) a true optimum design

could be found subject to multiple load cases; 3) numerous failure modes could

be considered simultaneously; and 4) objective functions other than weight

were possible. The disadvantage of the method was the large demand placed

on computational resources.

In the original structural synthesis approach, the structural analysis re-

quired to compute the design constraints was subordinate to the optimization

algorithm, and a structural analysis was performed for every change in the

values of the structural-sizing design variables in the design process. Thus,

the process was computationally expensive. Several methods for overcoming

this disadvantage such as the use of approximation techniques, reduction tech-

niques, and decomposition techniques were presaged as early as 1971 by Pope

and Schmit [40].

Approximation techniques are utilized to loosen the coupling of the

structural analysis from the structural optimization procedure. Computation-

ally efficient, approximate models for the dependence of the structural response

and the constraint functions on the design variables are developed from the

structural analysis and the sensitivity derivatives of the response. These ap-

proximate models are used in place of the full structural analysis and constraint

evaluation in the structural optimization procedure. After the structural op-

timization procedure converges, the approximate models for the structural re-



sponseare reformulatedusingtheresulting setof designvariables,andthe cycle

is repeateduntil the variation of resultsbetweencyclesis below a predefined

tolerance. The accuracyof using linear Taylor seriesapproximateanalyseswas

evaluated by Storaasliand Sobieszczanskiin [63]using a finite elementmodel

of a subsonic transport fuselagesection. However,Schmit and Farshidefined

the approximation conceptscommonlyusedtoday in [45], and the further de-

velopment of theseconceptsby Schmit and Miura [48] significantly improved

the computational efficiencyof NLP structural-sizingdesignmethods. Many of

the numerousapproximation techniquesthat havebeendevelopedaresumma-

rized in [2]. Thus, approximation-basedNLP structural-sizing designmethods

are now well developed,and are implementedin severalcommercialstructural

analysiscodes.

Reduction techniquesareutilized to reducethe sizeof a structural op-

timization problem to make it more tractable. In one approach,the original

set of designvariablesis replacedby a sum of fixed basisvectors for the design

variables (chosenby the user) multiplied by undeterminedcoefficients. If the

number of basis vectors is smaller than their length, thesecoefficientsform a

new set of designvariablesthat is smaller than the original set of designvari-

ables(see[39]). However,the bestchoiceof basisvectors is not known a priori,

and the quality of the resulting design depends on the user's skill in choosing

good basis vectors. In another reduction technique, the constraint functions

are combined into one or more cumulative constraint functions. This approach

can significantly reduce the number of constraints. Cumulative constraints may

make the adjoint sensitivity method more attractive by reducing the number of

constraints to a number significantly below the number of design variables ([19],

3
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p. 267), and they are also utilized in some of the decomposition methods de-

scribed subsequently. The Kreisselmeier-Steinhauser (K-S) function described

in [27] is one example of a cumulative constraint function.

Another approach that has been investigated to improve the computa-

tional efficiency of structural sizing is the decomposition of the problem into a

number of smaller subproblems that can be analyzed in parallel. An excellent

summary of the different ways decomposition techniques are utilized to solve

engineering design problems is given by Barthelemy [5] where decomposition

methods are classified based on how the design variables are coupled through

the problem constraints. This classification technique is similar to the method

for classifying large linear programs ( [29], pp. 117 - 122). Decomposition tech-

niques become computationally advantageous if the overall problem can be

reformulated into subproblems having sets of design variables and constraints

that are nearly disjoint. In practice, there is usually some coupling between

the subproblems. If some design variables are common to the constraints of the

different subproblems, they are called coupling variables. If some constraints

depend on design variables from more than one subproblem, they are called

coupling constraints. In linear programming, problems with coupling variables,

but without coupling constraints, are called angular, and problems with cou-

pling constraints, but no coupling variables, are called dual-angular.

Some of the earliest descriptions of general processes for decomposition

of large systems into subsystems are given by Mesarovick, et al. in [32] for cer-

tain types of hierarchical systems. A hierarchical system can be decomposed

into a tree or "family" of subsystems in which the "children" subsystems at a

given level are independent of their "siblings" at the same level, and the cou-



pling between these sibling subsystems is through the "parent" subsystem. The

parent subsystem controls its children subsystems using a set of coordination

variables. Several methods of forming coordinable subproblems are described

in [32]. These methods ensure that when a solution to the decomposed prob-

lem is found, it is also a solution to the original problem. The hierarchical

decomposition methods of Mesarovick become feasible when the design vari-

ables of the problem can be grouped into sets that are only coupled through a

few constraint equations (i.e., when there is constraint coupling). One common

method for coordination when there is constraint coupling is that of goal coor-

dination. In goal coordination, the constraints in a subprobiem that have no

explicit dependence on the sibling subsystems are treated explicitly, while the

coupling constraint equations are multiplied by their Lagrange multipliers and

are added to the objective functions, forming a partial Lagrangian function.

The parent subsystem, which is the dual of the original problem, determines

the optimum value of these Lagrange multipliers. Because goal coordination is

essentially a primal-dual optimization method, the objective functions of the

child subsystems must be convex, or must be "convexified" [7] for the method

to yield satisfactory solutions [17]. This approach has been utilized for plastic

design problems by Kaneko and Ha in [23].

The most common decomposition approach for structures treats a struc-

ture in a hierarchical way with increasing levels of detail at each lower level

in the hierarchy. For example, a discrete region - commonly referred to as a

substructure - of a stiffened structure may be represented at an upper level in

the hierarchy by smeared stiffnesses, while the region is modeled with discrete

geometry at a lower level. The decomposition of a structure into substructures

5
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to define optimization regions is described in this section. The decomposi-

tion of a structure into substructuresfor analysisand optimization purposesis

describedin a subsequentchapter.

Two early approachesthat utilized two levelsof representationfor sub-

structures and that performedsearchesin the lower-leveldesignspacearede-

scribedby Giles in [16]for wing substructures,and by Kirsch, et al. in [25]for

moregeneralsubstructures. Schmit and Ramanathan[49]describea two-level

approach in which optimization is used within both levels. The upper-level

subproblemutilizes weight asthe objective function, and area (for trusses)or

smearedorthotropic layer thicknesses(for stiffenedskins) as designvariables.

The upper-level constraints are the side constraints (lower and upper limits)

on the designvariables,displacementconstraints, systembuckling constraints,

and stressconstraints. In the upper-level stressconstraints, the compressive

allowable stressis the maximum of a fixed lower stresslimit and of the local

buckling and crippling allowablesthat are determinedfrom the lower-levelde-

sign of the previous iteration. The lower-levelsubproblemsutilize the discrete

geometry of substructures (suchasstiffener bladeheight) as designvariables,

and minimize the differenceof the structural stiffnessdetermined using the

lower-leveldesignvariablesfrom the stiffnessdeterminedusing the upper-level

designvariables. The constraints at this level arediscretegeometry side con-

straints, stress constraints, and local buckling and crippling constraints. At

convergenceof the two-levelapproach,the stiffnessof the structure is the same

whether it is determinedby the upper-levelor the lower-leveldesignvariables.

A generalizationof this approachthat allows for laminated compositestruc-

tures is describedby Schmit and Merhinfar in [47]. In these three two-level



approaches there isno coordination or directcoupling between the lower-level

designs of substructures,and the resultingdesigns are not necessarilyoptimal.

The lineardecomposition method of Sobieski [58]is a widely investi-

gated hierarchicalscheme applied tostructuraloptimization that may approach

a locallyoptimal solution. (Although Kirsch [26]and Kirsch and Moses [24]

developed rigorous,substructure-based approaches forhierarchicaldecomposi-

tion of a structuraloptimization problem prior to the work of Sobieski,these

methods are not finite-elementbased, and have only been applied to simple

problems.) In the lineardecomposition method, the cumulative constraint vi-

olationfor the lower-levelconstraintsof Schmit and Ramanathan isminimized

in each lower-levelsubproblem. The only explicitconstraintsin a lower-level

subproblem are equality constraintsthat ensure that the stiffnessdetermined

using the lower-leveldesign variablesequals the structuralstiffnessdetermined

using the upper-leveldesign variables.An optimum sensitivityanalysis with

respect to the upper-leveldesign variables,as described in references [4]and

[55],isperformed for these lower-level,cumulative-constraint,objective func-

tions. At the upper level,the problem formulation isas described in Schmit

and Ramanathan except that the upper-levelstressconstraintsare replaced

by linear approximations to the optimM cumulative constraints using the op-

timization results and the optimal sensitivity analyses of the lower level. This

method is demonstrated in [56], generalized for multiple levels in [57], and

applied to a large transport aircraft sizing problem in [67]. The method is

combined with approximation methods for the constraints in [3], and two more

recent variations of the method are described in [61].

Since the linear decomposition method is essentially the decomposition

7



of a problem using coupling variables (the upper-level design variables enter

into the lower-level subproblems as parameters), other solution methods that

allow coupling variables can be used to form Mternate solution strategies. The

penalty approach of Haftka [21], and the method of Thareja and Haftka [64]

are two such examples, which interestingly enough can be efficiently solved at a

single level. More recently, nonhierarchical decomposition methods have been

developed to simplify the multidisciplinary optimization process. These meth-

ods utilize the notion of a global sensitivity analysis of interacting subsystems

[60] to determine the total sensitivity of interdependent subsystems to changes

in problem parameters, and concurrent subspace methods along with an over-

all coordinating problem for optimization (see references [8], [54], and [59]).

Global sensitivity analysis has also been shown to be useful for hierarchical

structural analysis by Padula and Polignone in [38].

1.2 Scope of Present Study

In the present dissertation, efficient methods for solving structural optimiza-

tion problems are developed by approaching an optimization problem using a

theoretical framework that is more general than the nonlinear programming

theory that forms the basis of the structural optimization methods described

in the previous section. The approach of using a different, and perhaps un-

conventional, theoretical framework to take a fresh look at an old problem

is common in mathematics. Utilizing a generalized theoretical framework in

studying structural optimization allows for a new perspective of the existing

solution methods and suggests new approaches that are more efficient than the

existing approaches.



Equilibrium programming(EP), or non-cooperativegametheory, is the

generalizedtheoretical frameworkutilized in the presentdissertation. A more

detailed overviewof EP is presentedin the next chapter, but in brief, equilib-

rium programmingis a theory that describesthe behaviorof multiple, interact-

ing systemsthat caneachbedescribedasNLP problems.An important advan-

tage of utilizing an equilibrium programming frameworkfor developingstruc-

tural optimization methods over ad-hoc approachesis that a well-developed

theory concerningexistenceand optimality of solutions is available in the lit-

erature. Thus, the developmentof the equilibrium programming structural

designformulations in the presentdissertation wasguided by, and benefitted

from, the theoretical structure provided by EP.

Additional guidancefor the developmentof computationally efficient,

equilibrium programmingstructural designformulations is obtained by study-

ing the reasonsfor the successof the commonly used design methods. As

indicated in the previoussection,the commonlyusedmethodsfor solving large-

scale structural optimization problems include approximations for the design

constraints, variousmethodsfor reducing the sizeof the problem, and decom-

position of the problem into multiple subproblemsthat can be solvedin paral-

lel. Thesemethodshavebeenvery successfulin improving the computational

efficiencyof finite-element-basedstructural analysisand optimal structural de-

sign. A study of the computationaladvantagesprovidedby thesemethodscan

suggeststepsto further improvecomputational efficiency.

Using approximation concepts,suchas simple, approximate equations

to describethe designconstraint functions, the number of expensivefinite el-

ement analysesrequired in the NLP solution is reducedsignificantly. But a

9
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primary reasonfor the improved efficiency is that the number of sensitivity

analyses,which supply sensitivity derivatives for the gradient-basedsearch

methods commonly used, is dramatically decreased. It is often stated that

the sensitivity derivativesobtained by the semi-analyticdirect sensitivity anal-

ysis method (initially developedin [14]) are inexpensivebecausethe factors

for the stiffnessmatrix in the displacementsensitivity equation are available

from the structural analysis.However,the right-hand sideof the displacement

sensitivity equation has asmany columnsas there are designvariables. As a

result, the computation of the right-hand sidefor the semi-analyticsensitivity

equation, the back substitution to determine the matrix of displacementsen-

sitivity derivatives,and the useof this matrix in chainrule or finite difference

calculations to determine stresssensitivity derivatives can be very expensive.

In addition, the computational effort for computing thesesensitivity derivatives

increasesin almost direct proportion to the number of load cases(however,as

the number of loadcasesincreases,the adjoint sensitivity method maybecome

morecomputationally efficient than the direct method). The dominanceof sen-

sitivity analysiscost over the structural-responseanalysiscost is alludedto in

[3], and it is explicitly demonstratedfor the larger exampleproblemsdescribed

subsequently.Thus, asproblemsbecomemorecomplex,a fundamentalneedis

to reducethe number of sensitivity derivative calculations.

An understanding of the primary advantagesof decompositionof an

optimization problem canalsoguidedevelopmentof methodshaving increased

computational efficiencies. A fundamental advantageof the linear decompo-

sition method is that when a number of lower-level subproblemsare to be

solved,they can be solvedin parallel. Another advantage,which is not often



highlighted, is that the displacementsensitivity derivativescalculated are sen-

sitivity derivativeswith respectto a small set of upper-leveldesignvariables.

In other words, thesederivativesarewith respectto a relatively small number

of substructure stiffnesses,not with respectto the morenumerousdetailed ge-

ometry parameters. Thus, the number of displacementsensitivity derivatives

required canbe greatly reducedusingthe linear decompositionmethod. Even

with this advantage,it wasdeterminedfor the exampleproblem in [67] that

36%of the total computer time for problemsolution wasutilized in the finite-

element-basedanalysisand sensitivity derivativecalculationsthat involvedonly

five of the 1300designvariables!Thus, althoughthe newoptimization methods

developedin the presentdissertationare derivedas equilibrium programming

formulations, oneof the fundamental approachesfor the developmentof these

methods is to find waysto reducethe number of sensitivity analysesrequired,

and to reducethe sizeof the sensitivity analysisproblems.

In subsequentchapters,equilibrium programmingtheory is summarized,

four equilibrium programming structural design formulations are developed,

and numericalresults for two of theseformulationsarepresented.Linear struc-

tural analysis is assumedin the derivations and test problems, and the con-

straints consideredare side constraints, displacementconstraints, stress and

local buckling constraints. Specifically,someof the fundamental propertiesof

equilibrium programmingaresummarizedin chapter2. In chapter 3, the basic

equationsgoverningfinite-element-basedstructural analysisand optimization

are described,and two commonly useddesignmethods, fully stresseddesign

and constraint approximations,aredevelopedasEP designformulations. Two

new EP designformulationsare alsoderived in the chapter. The first new EP

11
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design formulation utilizes approximate, updated sensitivity derivatives that

replace the constraint sensitivity derivatives determined by a traditional sen-

sitivity analysis at a small fraction of the cost. The second new EP design

formulation is a substructure-based decomposition method in which the sensi-

tivity analysis subproblems are greatly reduced in size, and can be solved in

parallel. The method of derivation of this formulation ensures the existence

and optimality of the solution of the decomposed problem. In chapter 4, some

specific information regarding the computer implementation of the EP design

formulations is given, and results of using the two new formulations on test

problems are obtained and compared with a commonly used method. The test

problems for the EP design formulations range from a simple ten-bar truss to a

high-speed civil transport having 348 design variables. The overall results are

summarized, and suggestions for future work are given in chapter 5.



Chapter 2

Equilibrium Programming Background

In this chapter, the development of equilibrium programming and its previ-

ous uses in engineering design are reviewed. The mathematical statement of

an equilibrium programming problem, the necessary condition relations, and

a solution existence theorem are stated. Some properties of an equilibrium

programming solution and some solution methods are also given.

2.1 Equilibrium Programming Background

Equilibrium programming (EP), or non-cooperative game theory, was devel-

oped in an operations research setting. The first proof of the existence of the

solution to an equilibrium programming problem, called an equilibrium point,

is due to Nash [34]. In Nash's treatment, the subproblems assume the roles of

players trying to maximize their individual pay-off functions in a game, and

the domain for each subproblem is a fixed set of strategies that each player can

utilize. The formulations of the subproblems are generalized in Debreu [10] so

that the domains of each subproblem are functions of the design variables of the

other subproblems. Debreu proves the existence of the equilibrium point, sub-

ject to certain restrictions, assuming that the feasible domains are nonempty,

closed, and bounded regions. Zangwill and Garcia [68] generalize the theorem

13
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of Debreu, and proveexistenceof equilibrium points underweakenedfeasibility

assumptions.

Although there have beenapplicationsof equilibrium programming to

economics,game theory, and network theory ([15], pp. 112- 196), there have

been few applications of equilibrium programming in engineeringdesign. Its

use in multicriteria engineeringdesign is describedby Vincent [65]. In mul-

ticriteria design, tradeoffsbetweenpossiblyconflicting criteria are required so

that the designis acceptableto all the designersinvolved in the designprocess.

Drawbacks in using a simplistic equilibrium programming approach to multi-

criteria design (i.e., allowing eachdesignerto independentlyoptimize his own

designobjective function) arenonconvergenceof the design,or convergenceto

a design that is inferior to other possibledesignsfor all the designers. Ira-

position of an overall coordinating managementof the designprocessmay be

required to obtain satisfactorydesigns.Onecoordination method for the game

theory approachto multicriteria designis developedin [42] and is applied to

illustrative structures-controlsmulticriteria designproblems in [41]. Thus, an

equilibrium programming formulation that includessomeform of coordination

appearsnecessaryfor equilibrium programmingto be usefulin engineeringde-

sign. In the EP design formulations derived in the present dissertation, the

minimum-weight structural optimization problem, which is essentiallya NLP

problem, is reformulated asan EP problem. Coordination of the EP subprob-

Iemsso that the solution is optimal canbe important.



2.2 Features of Equilibrium Programming Problems

The theory of equilibrium programming provides a framework to analyze multi-

ple, interdependent nonlinear programming problems. Following Zangwill and

Garcia [68], equilibrium programming is a generalization of nonlinear program-

ming (NLP) which can be personified as having M decision makers (which

may be implemented as search algorithms) that interact in a system. Each

decision maker has a NLP subproblem to solve, and an independent set of

design variables to control. The mathematical statement of this problem fol-

lows. The design variables controlled by decision maker i are denoted as xi,

the design variables of all M decision makers are denoted as x = (xl,..., x/),

and all design variables not controlled by decision maker i are denoted as

"xi = (xl,..., x_-l, xi+1,..., XM). Decision maker i has an objective function

to minimize, fi(xi, xi), while satisfying a set of constraints. Thus, the mathe-

matical description of equilibrium programming is:

15

min fi(xi, Y_i)
Xi

subject to: gi(x/,._/) _ 0 (2.1)

hi (xi, xi) = 0

for the i = 1,..., M interacting NLP subproblems. The variables following the

comma in any of the functions in statement (2.1) are treated as fixed parameters

in that subproblem. Thus, in the NLP problem of decision maker i, the design

variables from other decision makers ._ enter as parameters that account for

the coupling of the subproblems.

Any value x that is a solution to all the NLP subproblems represented

by statement (2.1) is called an equilibrium point. There may be numerous equi-
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librium points of an equilibrium programming problem. In a manner similar

to NLP, first-order necessaryconditions are satisfied at an equilibrium point

subject to a constraint qualification. Thus, at anequilibrium point, there exist

Lag-rangemultipliers (Xi,/_i) suchthat the following conditions are satisfied:

af_(x_, _i) _)OXi + ('_i)TC_gi

eOhi (xi, xi)

+(].ti) T O,qXi = 0

gi(xi,'xi) < 0

hi(xi,'Xi) = 0

Ai > 0

= o

(2.2)

for i = 1,..., M. The conditions governing the existence of solutions (x, X, #)

that satisfy the necessary condition relations (2.2) and solve the equilibrium

programming problem (2.1) are discussed in the next section.

2.3 Existence of an Equilibrium Point

The satisfaction of a constraint qualification is required for both the existence

of a solution to the first-order conditions represented by statement (2.2) and

for the existence of an equilibrium point. One form for the constraint qual-

ification is given in [68]. The constraint qualification is satisfied if, for all x

feasible to the NLP subproblems represented by statement (2.1), and for every

subproblem i: 1) the vectors Ohi,j(xi, "2i)/Oxi for all components j of hi are

linearly independent, and 2) there is at least one solution zi to the relations:

Og_(xi"Xi)z_ < 0 (2.3)
0xi



0hi(xi'Xi)zi = 0
¢Oxi

where g_" is the vector of inequality constraints in subproblem i that are active

at x. With regard to the inequality constraints, this constraint qualification

essentially states that it is always possible to move into the interior of the fea-

sible region from a point on the boundary of that region. However, because

constraint qualification relations (2.3) must be satisfied individually by each

EP subproblem, these requirements on the constraint functions in EP are more

restrictive than in NLP. For example, if the constraints from two EP subprob-

lems are given by g_(., x2) and g_(x2, .), then relation (2.3) cannot be satisfied

for subproblem i = 1 because (0g_/Oxl)zl = 0. However, relation (2.3) may

be satisfied for this example when the constraints and design variables of the

subproblems are combined within a single NLP problem (i.e., (c3g*/0x)z < 0

where g* = (g_, g_) and x = (xl, x2)).

A very general theorem for existence of an equilibrium point that is the

solution of problem (2.1) is given in [68]. In this theorem, continuity, but not

differentiability, of the objective and constraint functions is required. Other

conditions for existence are: 1) the functions satisfy constraint qualification

relations (2.3) (actually only a weakened form of the constraint qualification is

required); 2) the feasible region is bounded with at least one feasible point x' for

which gi(x_, _._) < 0 and h_(x'_, _) = 0 for every feasible point x; 3) the func-

tions fi(xi, xi) and gi,j(xi, "2i) are convex in xi; and 4) the functions hi,j(xi, "2i)

are linear in xi and, for a given i, have linearly independent gradients. The con-

vexity and linearity restrictions on (f_, g_) and hi, respectively, may be relaxed

and a solution to the necessary condition relations (2.2) will still exist. How-

ever, the solution may not be an equilibrium point. Other versions of the EP

17
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existencetheorem are reported in [68]. The sufficient conditions for existence

of an equilibrium point are more restrictive than those required for existence

of an optimal NLP solution. In addition to the more restrictive constraint

qualification, a NLP solution exists with either condition 2) given above, or

with condition 2) replaced by the coercive assumption defined by f(x) ---. +ec

as lxl --* oc ([69], p. 363). Some interesting equilibrium point properties are

described in the next section.

2.4 Some Equilibrium Point Properties

Although the differences between an equilibrium point and an optimal point

(i.e., the solution of a NLP problem) may appear slight, they are important.

The following equilibrium point properties, summarized from [15], illustrate the

differences. Several examples of these differences can be found in the reference.

An equilibrium point is, in general, different from an optimal point,

even if the same constraints are satisfied and each EP subproblem has the

same objective function. This difference can occur because the coupling of the

constraint derivatives in the respective necessary condition relations is gener-

ally weaker for an EP formulation than for a NLP formulation. An example

illustrating the differences follows. Suppose that there are two EP subproblems

defined by the statements

min 2xl - x2
Xl

subject to: 0 _< xl _< 1 (2.4)

-xl + x2 <_ 0



and

min 2xl - x2
X2

subject to: 0 < x2 _< 1 (2.5)

-xl + x2 _< 0

These subproblems have the same objective function and a common constraint.

All the points on the line segment connecting (0,0) and (1,1) are equilibrium

points. If any point on this line segment is attained during the solution process,

the stability property of an equilibrium point ([15], p. 84) will prevent any

movement from this point, even though there are neighboring solution points

that would decrease the objective functions of both subproblems. Suppose

that the constraint relations of statements (2.4) and (2.5) were combined into

a single NLP using their common objective function, and with design variables

(xl, x2). Then the only optimal point for this NLP problem would be (0,0).

EP formulations for modeling a system enable the M subproblems to have M

different, and possibly conflicting, objective functions. Thus, in general, the

equilibrium points of an EP formulation of a system will differ from the optimal

points of an NLP formulation of the system that uses the same constraint

relations but has only one objective function.

Additional constraints can affect EP solutions differently than NLP so-

lutions. In NLP, additional constraints generally increase the value of the

objective function. However, in EP it is possible for additional constraints

to force a coordination or cooperation of the subproblems that reduces the

objective functions of all the EP subproblems. In the previous example, if

the equilibrium point (0.75, 0.75) were found during the solution process, the
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objective functions for both subproblemswould be 0.75. If the additional con-

straint x2 < 0.5 were added to subproblem (2.5), the objective functions at the

new equilibrium would be reduced to a value no larger than 0,5. The stability

property of an equilibrium point mentioned previously states that a solution

to an EP problem does not change for a perturbation of the design variables

of a single subproblem from equilibrium values. Under certain restrictive as-

sumptions, the equilibrium point is unique, and therefore the stability of the

equilibrium point is global [30]. If the equilibrium point is globally stable, the

solution methodologies discussed subsequently are more likely to converge to

the equilibrium point.

2.5 Solution Methodologies

Because the existence of an equilibrium point is independent of any particular

solution method, an equilibrium point can be obtained in several ways. The

most straightforward method is to solve all the subproblems sequentially in

some predetermined cyclical order. When the solutions to all the subprob-

lems do not change from the previous cycle, an equilibrium point has been

reached. Although this method is used in the present dissertation, it may not

converge, as demonstrated in [65]. Two approaches that improve the conver-

gence characteristics of a sequential solution method are: 1) approaches that

modify the objective functions so that they are strictly convex (such as the

proximal point algorithm [44], or the penalty approach of [62]); and 2) move-

limit-control methods. Incomplete convergence of intermediate subproblem

solutions may also be used to improve computational efficiency. Another varia-

tion of the sequential solution method is to solve the subproblems in a sequence



that is determinedby information generatedduring the solutionprocess.Some

subproblemsmay evenbe omitted from a particular cycle. However,all the

subproblemswould needto be presentin the last cycle to ensureconvergence

to an equilibrium point.

In another solution method describedin [15] (p. 97), the equilibrium

point is found by converting the necessarycondition relations (2.2) for each

of the subproblemsinto a so-calledKuhn-Tucker equation set. The set of

equationscan then be solvedusingany nonlinearequation method. Homotopy

methods aredescribedin [15]asonemethod for solving theseequations.

In yet another solution method, applicable if parallel computation is

available, the M subproblems can be executed on M processors in an asyn-

chronous manner. Since the other subproblems communicate with subproblem

i only through the parameters _, the processors are effectively decoupled. Any

update of xi during the solution process on processor i can be made immedi-

ately available to the other processors. This method may only be applicable

if the functions in the problem have favorable properties [30], and may require

additional controls on the solution process to ensure convergence to an equilib-

rium point. For example, relaxation techniques are used as a control method

to improve convergence properties in [6].
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Chapter 3

Development of Equilibrium Programming

Structural-Design Formulations

In this chapter, the mathematical definition of a NLP-based, optimal struc-

tural sizing problem is stated as a point of departure for the development of

equilibrium programming structural-design formulations. Only a single load

case is used in the following development; extension to multiple load cases is

straightforward. Four EP structural-design formulations are then developed.

The formal definition of the EP design variables, xi, will be given for each

formulation. This formal definition may include both true design variables

that can only be determined during the solution of the minimization problems,

and behavior variables that can be determined from an analysis within the

subproblem after the minimum is found.

The first two EP design formulations developed herein were initially de-

scribed by the author in [51]. Their primary purpose is to further acquaint

the reader with equilibrium programming concepts, and to show that two com-

monly utilized structural-sizing methods are, in actuality, EP formulations.

Thus, EP formulations are currently being used to improve the computational

efficiency of structural sizing. In these formulations, the EP subproblems con-

sist of a structural-sizing subproblem (or subproblems for the first formulation),
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and a structural-response subproblem for each load case. The first equilib-

rium programming structural-design formulation developed herein considers

only stress and local buckling constraints, and side constraints. This formula-

tion is shown to be equivalent to the method of fully stressed design for rod

and membrane elements. The second formulation to be described provides for

optimal designs with displacement, stress and local buckling constraints, and

side constraints. This formulation is shown to be equivalent to the NLP-based

approach to optimal structural sizing using a first-order Taylor approximation

of the structural response for a rapid analysis.

In the third EP design formulation to be presented, an EP subproblem

is developed that performs an approximate sensitivity analysis for a structurM-

response subproblem using the results of a single finite element analysis and the

sensitivity derivatives of a previous iteration. Thus, the cost for this approxi-

mate sensitivity analysis is negligible. This formulation was first reported by

the author in [52]. Similar expressions for approximate sensitivity derivatives

were developed using an ad hoc method in [31] for use in trajectory optimiza-

tion, and the present formulation generalizes these expressions and provides a

formal basis for their derivation.

In the fourth EP design formulation developed herein, a novel substruc-

turing technique is utilized to decompose the analysis and sensitivity calcu-

lations for structural design. The substructural analysis portion of the for-

mulation described herein was first reported by the author in [53]. In this

formulation, the structure is divided into substructures, and each substruc-

ture has its structural response and sensitivity derivatives determined by a

structural-response subproblem. The structural sizing and the coordination
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of the structural-responsesubproblemsare determinedby a singlestructural-

sizing subproblem.

3.1 Optimal Structural-Sizing Problem Statement

The mathematical descriptions of finite-element-based, linear structural analy-

sis, and optimal structural design are given in this section to provide a point of

reference for the ensuing discussions. A single structural load case is assumed

in the descriptions.

A minimum potential energy formulation can be used in a finite-element-

based structural analysis to calculate the structural displacements and stresses

that are required to evaluate a design. Given the structurM arrangement, the

sizes for all the structural elements, a discretization of the structure into finite

elements, and a set of external forces on the discretized structure, the correct

structural displacements are those that minimize the potential energy of the

structure. Thus, the structural response is the solution to the unconstrained

NLP problem given by

min (1/2uTgu- FTu) (3.1)
U

where the first term in (3.1) is the strain energy, and the second term is the work

due to external forces. The vector u is a vector of nodal displacements, and F is

a vector of external nodal forces (see the Nomenclature section for a discussion

of notation and a full list of symbols). The domain of u is the entire space/_

(where n is the number of displacement degrees-of-freedom), but the boundary

conditions on u are assumed to be incorporated in the global stiffness matrix K.

The necessary condition relations for the unconstrained minimization problem
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representedby statement (3.1) aresimply the linear equations:

Ku -- F (3.2)

Oncethe displacementsu havebeendeterminedfrom either of thesetwo state-

ments, stresses_r (or stressresultantsN) within everyelementof the structure

can be calculated from the displacements,the elementstrain-displacementre-

lations, and the elementconstitutive relations.

A nonlinear programmingmethod that is used for optimal structural

designcan be personifiedashaving onedecisionmaker (which may be imple-

mented asa searchalgorithm) with control of a set of designvariablesgivenby

a vector v. The goal of the decisionmaker is to minimize an objective function

W(v) while satisfying a set of constraints. The mathematical description of a

NLP problem is:

min W(v)
V

subject to: g(v) _< 0 (3.3)

h(v) = 0

where g(v) are inequality constraints - which could include simple bounds on

the design variables - and h(v) are equality constraints. A common choice for

the objective function W(v) for structural sizing is the weight of the structure.

The structural-sizing design variables v, referred to herein as sizing variables,

can be the dimensions of the individual elements that explicitly contribute to

weight, such as beam dimensions, skin thicknesses, and stiffener dimensions and

spacing; or they can be variables which affect the weight in an indirect manner,

such as the orientation of fibers in a composite structure. The constraint func-

tions considered in the present study are side constraints (such as minimum
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gauge)on the sizing variablesgS(v), the local buckling and stressconstraints

ger(v, er(v)), and the displacement constraints gU(u(v)). The displacement

constraint functions gU(u(v)) are assumed to have no direct dependence on

the sizing variables v, but the functional form u(v) indicates an indirect de-

pendence on v through the structural analysis. The stresses _r(v), which are

shown to depend on v in the constraint functions, can have several forms.

For example, one can write er(v) = erU(v, u(v)) = o'N(v, N(v, u(v))) to show

that the functional form for stresses can depend directly on displacements u,

or indirectly on displacements through the stress resultants N. Very often the

side constraints, the displacement constraints, and the stress constraints reduce

to simple bounds on the sizing variables, the displacements, and the stresses,

respectively. Thus, the NLP approach to structural sizing that utilizes finite-

element-based structural analysis can be summarized by:

rain W(v)
V

subject to: gS(v) < 0

gU(u(v)) < 0

g°'(v,o'U(v,u(v))) < 0

(3.4)

where the displacements u(v) are found from statement (3.1) or equation (3.2).

The necessary conditions for the structural-sizing problem (3.4) are the same

as given in (2.2) restricted to a single subproblem.

3.2 Structural-Design Formulation 1

In this section, a simplistic approach to defining an equilibrium programming

formulation for structural design is described, its limitations are outlined, and
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modifications that overcome the limitations are developed. In this approach,

one EP subproblem is a structural-response subproblem that is defined by

the minimization problem of statement (3.1). In this subproblem, denoted as

subproblem I, the design variables are the displacements (i.e., x: - u), and

the sizing variables v are treated as fixed parameters. By parallel reasoning,

a second subproblem, denoted as subproblem 0, could then be identified as a

structural-sizing subproblem represented by statement (3.4) in which the design

variables are the sizing variables (i.e., x0 - v), and the displacements u are

treated as fixed parameters. The shortcoming of this EP formulation is that

an equilibrium point may not exist because constraint qualification relations

(2.3) cannot be satisfied for some constraints. For example, maximum stress

constraints for rod elements having cross-sectional areas A as design variables

(i.e., x0 - v - A) are given by g_(x) - o'(u) - _rma_ <__0. These constraints

depend only on the displacements (x:), and not on the areas (x0); so there is no

z0 that will satisfy the inequality in relation (2.3). Thus, a more sophisticated

formulation is required.

A formulation that uses an alternate form of the stress constraints may

enable satisfaction of the constraint qualification relations. Since functions for

calculating the stress and buckling constraints can be constructed by using both

the sizing variables and the stress resultants of a structure, a change of variable

is made to utilize stress resultants in the constraint functions. Because the

stress and buckling constraint functions depend explicitly on the sizing variables

with this change of variable, the satisfaction of the constraint qualification is

much more likely, but solution existence is still not guaranteed as will be shown

in a subsequent example.
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The stress resultants throughout the discretized structure are computed

within the structural-response subproblems, and are symbolically represented

by the equation

N --N(v, u) (3.5)

Thus, in this structural-design formulation, the structural-response sub-

problem (subproblem 1) consists of a solution of the unconstrained minimiza-

tion given by statement (3.1) (or its necessary conditions equation(3.2)) for

u followed by calculation of stress resultants N by equation (3.5). The design

variables of the structural-response subproblem are defined as xl - (u, N). The

stress resultants N are used instead of displacements in formulating the stress

and buckling constraints of the structural-sizing subproblem (subproblem 0).

Thus, the structural-sizing subproblem in this equilibrium programming for-

mulation is:

min W(v)
X 0 _V

subject to: Vmi n -- v _< 0 (3.6)

g_(v, crN(v,N)) _< 0

where the side constraints are shown as simple minimum gauge constraints in

this subproblem.

The method of fully stressed design [28] can be derived from this for-

mulation if: 1) only one-dimensional rod and two-dimensional membrane finite

elements are used; 2) one sizing variable is associated with each finite element

having a stress constraint; 3) the stress constraints limit the maximum stress

magnitude or von Mises stress; and 4) there are no buckling constraints. The

structural-sizing subproblem can then be decomposed into a set of independent
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elemental problems, one for each sizing variable and constrained element com-

bination. The solution of these elemental problems is simple since the value

of the sizing variable that makes a constraint active can be found analytically

for each load case. For example, the elemental problem for the cross-sectional

area of one-dimensional rod element j is solved by:

Aj = max(Aj,min,INjl/ j,m ) (3.7)

where max( ) chooses the maximum of its arguments, the structural-sizing

design variable x0j is defined to be the sizing variable Aj, and Nj is the axial

force in the element j. Note that the quantities Nj are elements of the stress

resultant vector N, and are also elements of xl and x0. A solution method that

alternates between solving the elemental sizing problems, and the structural-

response subproblem leads to fully stressed design if it converges.

As stated previously, the change of variables that recasts the stress and

buckling constraints in terms of sizing variables and stress resultants makes the

existence of an equilibrium point more likely, but not guaranteed. A simple

example makes this statement clear. Assume a rod is fixed between two rigid

walls and its temperature is increased; the design problem is to size the rod

cross-sectional area A to minimize the weight and to satisfy a maximum stress

constraint. The temperature change induces a strain which can be expressed

as an equivalent external load that is a function of the stiffness. Thus, the

equivalent external load (which is also the rod stress resultant N) is calculated

by the equality constraint hl _ N - k AT A = 0 in the structural-response

subproblem where the sign of N is defined to be positive for compression, k is

a constant of proportionality, and AT is the temperature rise. The minimum
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gaugeand the stressconstraints,which are calculatedin the structural-sizing

subproblem, are given by g0,1 - Amin - A _ 0 and g0,2 -- N - Aam_ __ 0,

respectively. These constraints are shown in figure 3.1. Since a minimum

weight design corresponds to a minimum A that satisfies the constraints, two

conditions can be identified in the figure. For a relatively low value of ATI,

the fully stressed design approach given here will converge to x* shown in the

figure. If AT2 is above a limiting value, the constraints allow for no feasible

region in the design space, a prerequisite for solution existence, and the fully

stressed design algorithm would diverge. This example is severe because even

a more sophisticated design method would fail for a large enough AT because

there would be no feasible region in design space.

Because structural design formu]ation I is a form of fully stressed de-

sign, it shares the advantages and disadvantages of fully stressed design. The

primary advantage is the simple nature of a structural-sizing subproblem that

requires no derivatives and is easily decomposed into a set of independent ele-

mental problems. The disadvantages are: I) there is no mechanism to ensure

satisfaction of the necessary conditions of the optimal structural-sizing problem

(3.4) so that the resulting equilibrium point may not be an optimal point; and

2) constraints, such as displacement constraints, that have no explicit depen-

dence on the sizing variables are not considered. An EP formulation is desired

which satisfies the optimality necessary conditions at an equilibrium point, and

can satisfy displacement constraints.
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Figure 3.1: Design space for a rod constrained between two rigid walls under-

going a temperature change.

3.3 Structural-Design Formulation 2

If the EP subproblems are identified using the simplistic approach described at

the beginning of the previous section, the constraint qualification relations (2.3)

cannot be satisfied for any displacement constraint because the displacements

would be fixed parameters within the structural-sizing subproblem. In addition,

the constraint qualification relations may not be satisfied for certain stress and

buckling constraints. Substituting approximate models, that depend explicitly

on the sizing variables, for these displacements within the structural-sizing

subproblem can overcome these difficulties.

In EP structural-design formulation 2, the displacements u, which are
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parameters independentof the sizing variables in structural-sizing constraint

functions g(v, u), are replacedwith a first-order Taylor seriesapproximation

given by

0u (v - vl) + u (3.8)uA(v,xl)-

In equation (3.8), the matrix 0u/0v may be viewed as a matrix of

optimal sensitivity derivatives with respect to parameters v [55] of the dis-

placements determined in the structural-response subproblem (subproblem 1).

The value vl is the value of v utilized in subproblem 1 when the sensitivity

derivatives are calculated. All the design variables for the structural-response

subproblem are utilized in equation (3.8) since xl - (u, 0u/0v, vl). This ap-

proximation satisfies the following two properties. First, the approximation

depends explicitly on v so that constraint qualification relations (2.3) neces-

sary for equilibrium point existence can be satisfied. Second, the approximation

satisfies the conditions: u A = u and OuA/Ov = 0U/0V at the equilibrium point

x = x* where v = v_ -- v*. This second set of conditions ensures the opti-

mality of the design given by the equilibrium point because the EP necessary

conditions are then the same as the NLP necessary conditions for problem (3.4).

Using the definition of equation (3.8), the structural-sizing subproblem

is given by the following statement:

min W(v)
X 0 _-V

subject to: v I < v

gS(v) <

gU(uA(v, Xl)) <

gO" (V, o'u (V, uA (V, Xl))) <

V u

0

0

0

(3.9)



wheremovelimits v I and vu that are adjusted during the solution process have

been introduced to ensure convergence. The structural-response subproblem is

represented by unconstrained minimization problems given by statement (3.1)

(or the necessary conditions given by equation (3.2)), and the following equa-

tions (which can be formally treated as equality constraints) that determine

the behavior variables Ou/0v and Vl:

K(v)0U 0K(v)u
_vv + 0v - [0] (3.10)

V 1 _ V

The first of the two equations in statement (3.10) is a sensitivity analy-

sis equation using a direct method of sensitivity analysis ([19], p. 264). In this

equation, the sizing variables v are assumed known, the vector u in the second

term is treated as a constant, and contributions from the nodal forces F are ne-

glected since F is assumed to be independent of v. In practice, the second term

of this equation is often determined by finite differences. The second equation

in (3.10) is a trivial identity which preserves the values of the structural-sizing

variables at which the sensitivity analysis is performed so they can be exported

to the other subproblems.

EP structural-design formulation 2 is equivalent to a NLP approach to

structural design with a first-order Taylor series for an approximate analysis

(i.e., the method of [45] except that reciprocal variables are not used) if the

equilibrium point is found by the following sequential steps: 1) solve the sub-

problems represented by statement (3.1) (or necessary conditions represented

by statement (3.2)) for u; 2) solve equations (3.10) for 0u/0v and vl; 3) use

the quantities found in steps 1 and 2 in equation (3.8) to form approximate
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models for displacementsuA(v, xl); 4) utilize the approximate modelsof step

3 in the structural-sizing subproblemrepresentedby statement (3.9) to solve

for v; and 5) repeat steps 1 through 4 in a cyclic manner, with an algorithm

defined to update the movelimits, until the changesin the solutionsfrom con-

secutive cycles converge. Although first-order Taylor seriesare used in this

development,other approximatemodelsfor displacementsthat dependon first

derivativescould beusedin placeof (3.8) ( [19], pp. 211-219).

3.4 Structural-Design Formulation 3

The two EP design formulations described previously represent current prac-

tices in optimal structural sizing. To further improve computational efficiency,

a formulation is derived herein that computes approximate, updated sensitivity

derivatives in an EP subproblem. The cost of computing these approximate

derivatives is essentially only the cost of the structural analysis, and the eval-

uation of the design constraints.

The approximate sensitivity analysis is derived as a correction, or up-

date, to previous values for the sensitivity derivatives. The sensitivity-derivative-

update subproblem is described for a general scalar function f(v), where v is

a vector quantity, as follows. The values of f and the gradient of f, cOf/Ov,

are assumed to be known at a previous value of v. These quantities are de-

noted as fold, Ofold/COV, and Vold, respectively. The value of f at the new value,

v = Vnew, is also known and an approximation to the gradient of f at v = Vnew

is sought; this approximate gradient is denoted as cOfnew/C_V. The difference be-

tween cOfnew/cOv and Ofold/OV is given by the gradient updating vector a (also

called an update vector, with components that are called updates herein), and
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the relation amongthesequantities is expressedby the equation

OL w OLld
-- +a (3.11)

Ov Ov

Using a criterion similar to that utilized in [11] (p. 171) in calculating

least-change secant updates of the Jacobian matrix for solving simultaneous

equations, the update vector a is chosen to be the vector that has the small-

est (weighted) magnitude, and that also satisfies a second-order Taylor series

relation between the quantities at v = Vnew and v = Void- The constrained

minimization problem that expresses these conditions is:

min _-_'_(ak wk) 2
ak

k

subject to: f_ew = fold + _'k( + -_ak)(Vnew,k -- Vold,k) (3.12)

where wk are user-defined weighting parameters. The equality constraint in the

minimization problem given by statement (3.12) indicates that the quantities ak

are approximations to _ 02f/OvkOvl (Vnew,Z-- Vold,I). Thus, the accuracy of the
1

sensitivity derivatives determined by the update vector is expected to degrade

as the quantity ]Vnew -- Vold[ increases in value. Letting Avk -- Vnew,k -- Vold,k

and Af - fn_w - fold -- _ Ofold/OVk Ark, the solution to the minimization
k

problem given by statement (3.12) can be found analytically using a Lagrange

multiplier method

ak = 2 A f Avk (3.13)

l

A simplified version of this expression has been developed by an ad hoc

method in [31] with application to the approximation of gradients for trajec-

tory optimization. However, the update equations described herein are derived
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independently using a formal methodology that allows for the general inclu-

sion of the weights wk that are not considered in [31]. For identical weights

wk, the update given by equation (3.13) is twice the Broyden update equation

described in [11] (p. 170), and is the same as that derived in [31]. The advan-

tage of including the general weighting terms is described subsequently. In the

present study, the function f represents a component of the constraint function

vector g.

3.4.1 Structural-Design Formulation Using Updated Sensitivity Deriva-

tives

The method of approximate, updated sensitivity derivatives is denoted as EP

structural-design formulation 3 (or simply formulation 3) herein. This for-

mulation is a modification of design formulation 2 described previously in

which update subproblems (3.12) are utilized during the solution process in

place of computing sensitivity derivatives such as (3.10). In subproblem 0 (the

structural-sizing subproblem), the design variables are Xo = (v, v0, go, 0g0/0v).

All but the first of which are actually behavior variables in that subproblem.

Formally, this subproblem can be represented by the following statement:

rain W(v)
V

subject to: -_(v- vl) +g_ _<

v I < v

gS(v) __<

V 0

0

_< v u

0

Vl

(3.14)

go = gl
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Ogo Ogl

Ov Ov

where the general constraints are linearized, and move limits v I and v u that

are adjusted during the solution process have been introduced to ensure con-

vergence. The last three equalities in problem (3.14) are required to define

data items that are saved to be utilized in the structural-response subproblem.

Subproblem 1 (the structural-response subproblem) has design variables given

by xl -- (u, gl, vl, 0gl/0v), and most of these quantities can be computed after

solving for the first member of xt (i.e., u). The subproblem statement is given

as:

subject to: gl = g(v,u)

V 1 _ V

(3.15)

SENS(choice) = 0

where the expression SENS(choice) = 0 represents the conditions:

K(v)-_

091,j

0K(v)u

0v

gj((v + Avie_'), (u ÷ 0u/0v AvieV)) - gl,j

Ovi Avi

(3.16)

when "exact" sensitivity analysis is desired, and

Ogl,j _ OgO,j

OY i OVi

Ogod "_2
+ 2(v, - vo,d \_]

gl,j - go,5 - Ogo,_/Ov (v - Vo)

(vL- vo, )2(Ogoj�Ova)2
(3.17)

when approximate sensitivity analysis is desired. Several implementation fea-

tures of this formulation should be noted. The potential energy minimization

in (3.15) is a formal statement, and may replaced with the necessary conditions
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of equation (3.2). The equality constraints in (3.15)are formal definitions to

define quantities neededin the structural-responsesubprobtem. As in the de-

termination of the movelimits, anadditional algorithm isrequiredto determine

whether statement(3.16)or statement(3.17) is utilized for SENS(choice) = 0

in statement (3.15) at each stage in the solution process. Because the update

minimization subproblems have analytic solutions given by equation (3.13),

these solutions are incorporated as constraints in the structural-response sub-

problem using equation (3.17) instead of specifying them as independent sub-

problems. Finally, the weights in the update subproblems have been specified

in equation (3.17) as the inverse of the gradients, wi = Ogo/OVi. Thus, the

updates to the sensitivity derivatives determined from the subproblems given

by statement (3.12) minimize the relative changes of the sensitivity derivatives

from their previous values, and the update to each component of a gradient

vector is related to the component magnitude. One advantage of this weight-

ing method is that the sparsity pattern of sensitivity derivatives is maintained

since an entry that is zero or small in magnitude remains zero or small in mag-

nitude after updating. This method of weighting was also found to provide

better convergence than using equal weights in some preliminary optimization

studies. More details concerning the computer implementation of this design

formulation are discussed in the next chapter.

3.5 Design Formulation 4

In this section, an EP design formulation is described that utilizes decom-

position methods when computing the structural response and the sensitivity

derivatives. In this formulation, the structure is divided into substructures, and



eachsubstructurehasits structural responsedescribedby a structural-response

subproblem. The structural sizing and the coordination of the structural-

responsesubproblemsaredeterminedby a singlestructural-sizing subproblem.

Substructure-baseddesignmethodshavebeenutilized in [25] and [26],

but the analysesin these referenceswere not basedon substructure princi-

ples. Traditional (i.e., superelement),substructure-basedsensitivity methods

for structural optimization havebeenusedto form a reducedbasisfor approxi-

mate analysisin [36],havebeenderivedusingthe adjoint sensitivity method in

[1], and havebeencombinedwith kinematic constraintsto reducethe number

of interface degreesof freedomin [37]. The adjoint method of substructure

sensitivity analysisof [1] is generalizedto multiple levelsof substructures in

[35]. An alternate method of using substructures for performing structural

analysis is developedin [12]. The method of reference [12] is essentially a

substructure-based, hierarchical decomposition method in which the response

of each substructure is determined by independent subproblems. Coupling con-

straints that determine the interface forces required to enforce the compatibility

of common interface nodes form a coordination problem. Decomposition into

substructures that are not restrained from rigid-body motions yields subprob-

lems that are not strictly convex. Nonconvexity causes difficulties, as noted

in [17], that can be handled using special techniques for solving both the sub-

problems for each substructure and the coordination problem. A modification

of this alternate substructure analysis method, described in [13], incorporates

penalty functions to ensure strict convexity of the subproblem objective func-

tions.

The EP design formulation of the present section is similar to the
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method of [12], but strict convexity is not required in this approach. In the

present derivation, each designconstraint is assumedto be local so that it

dependson the sizing variables and the structural responseof a single sub-

structure. Thus, stressconstraints, local buckling constraints, and constraints

that are functions of displacementswithin singlesubstructures may be con-

sidered in this approach. In the next subsection, the decompositionof the

structural analysis is discussedutilizing a two-substructure example. Then

the derivation is extendedto an arbitrary number of substructures,and the

substructure-basedEP designformulation is developed.

3.5.1 Derivation of the Substructure Analysis Method

The method of determining the structural responseis presentedfor a struc-

ture that is decomposedinto substructures,eachof which is assumedto have

a linear elastic responsewith nozero-strain-energymotions possibleexcept for

rigid-body motions. To permit a simpleexpositionof the method, it is initially

derivedusing two substructures.Four salient featurescharacterizethe present

method for structural analysisusingsubstructures.Firstly, when the substruc-

ture is not fully restrained from rigid-body motions, the structural response

is decomposedinto the rigid-body motions (referredto as "modes" herein) of

the substructure,and displacementsorthogonalto the rigid-body motions (i.e.,

the elastic deformations). Secondly,an augmentedstiffnessmatrix is formed

for eachof thesesubstructures. Thesestiffness matrices are symmetric, and

can be factored independently and, computationally, in parallel. Thirdly, a

structural-responsecoordination problem determines the forcesbetween the

substructures, and the magnitude of the rigid-body modes. The structural-



responsecoordination problemrequires the factored, stiffnessmatricesof the

substructures,and resultsin asystemof linearequationswith its order equal to

the number of shareddegrees-of-freedombetweensubstructuresplus the total

number of substructurerigid-body modes.Lastly, oncethe forcesbetweenthe

substructures are determined,the displacementsorthogonal to the rigid-body

modescan bedetermined.

The simplewing structurefinite elementmodel in figure 3.2 isutilized to

demonstratethe derivation of the analysisdecompositionmethod. The model

shownin the figure is decomposedinto two substructures,the secondof which

is unrestrainedand thus hassix rigid-body modes.The linear elasticstructural

responsefor the entire wing is determined using a minimum potential energy

formulation. This responseis the solution to the unconstrainedminimization

problem given by statement (3.1) having the necessaryconditions given by

equation (3.2). In this section,the nodal displacementsaredenotedusing the

lower case(i.e., u). When the displacementsof a substructure can be decom-

posedinto elasticdeformationsand rigid-body modes,the elasticdeformations

aredenotedby the upper case(i.e., U). Thus, the displacementsof the entire

wing are denotedby the nodal displacementvectoru, and the displacementsof

the two substructuresaregivenby the vectorsul and u2. The external loading

for the entire wing is givenby the nodal forcevector F, and the decomposition

of the external loadingis givenby vectorsF1 and F2 for the two substructures.

The dimensionsof eachof thesevectorsis the number of nodal degreesof free-

dom of the appropriate substructure.The nodaldisplacementsat the interface

of the two substructuresmust be equalfor the two substructuresto be compat-

ible. Thosecompatibledisplacementsat the interfacesof the two substructures

41
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Interface

nodes

I

L_Su 1 \ 11 L_ Sbstructure 1 ubstructure 2

Figure 3.2: Example wing structural finite element model decomposed into two

substructures.

are specified in a predetermined order with signed Boolean matrices denoted

by B1 and B2, where the nonzero entries of B1 are equal to +I and the nonzero

entries of B2 are equal to -1. The constraints of compatible displacements at

the interface between substructures is then expressed by Blul +B2u2 = 0. The

decomposition of the externally applied nodal forces at the interface nodes is

arbitrary as long as the sum of the forces applied to the interface nodes of each

substructure is equal to the actual externally applied forces at these nodes.

In a substructural decomposition, a stiffness matrix can be formulated

for each substructure. These stiffness matrices are relative to the substructure

nodal displacement vectors ui, and are denoted by K_. Thus, a constrained

minimization problem that is equivalent to the problem given by statement
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(3.1), and usesthe substructurenodal displacementvectors is

min (_ulTKxu: + luTK2u2
(ut, u2) 2

-F_ul - FTu2)

subject to: BlUl + B2u2 = 0

(3.18)

The constrained minimization problem given by statement (3.18) has a separa-

ble objective function with coupling constraints, and appears to be a candidate

for a hierarchical decomposition into two distinct minimization problems hav-

ing design variables ul and u2, respectively. The lower-level subproblems for

the displacements using such a decomposition are

min -luTKlul -- FTul + )_TBlul (3.19)
ul 2

and

lu_K2u2 - FTu2 + ATB2u2 (3.20)rain
U2 Z

where the goal coordination approach described in [32] (p. 240), and sum-

marized in the first chapter of the present dissertation, is utilized with the

common coordination inputs A. To find the minimum of problem (3.18) using

goal coordination, the coordination inputs would need to be determined by a

coordination problem that is typically the dual formulation of statement (3.18).

However, the minimization problem for (3.20) is insoluble due to the rank de-

ficiency of matrix K2. An EP explanation for the insolubility of subproblem

(3.20) can be developed based on the conditions for the existence of an EP

solution. One of the sufficient conditions for the existence of an equilibrium

point requires a bounded solution space for the subproblems. However u2 is

not bounded as seen from the following argument. Because substructure 2 has
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six rigid-body modes,a rigid-body matrix R2 can be formed that consistsof

the six rigid-body modesascolumn vectors. This rigid-body matrix satisfies

the condition K2R2 = [0], thus the vector R2a2 added to any displacement u2

will not change the substructure potential energy if the vector c_2 satisfies the

scalar equation FTR2a2 = 0. Since the vector a2 is not otherwise restricted,

it (and therefore u2) is unbounded. Thus, the sufficient conditions for solution

existence are not satisfied. To overcome the difficulties due to rank deficiency

of substructures having rigid-body modes, a pseudo inverse of the matrix K2

is used in [12] when solving for u2 in the necessary conditions for subproblem

(3.20). The coordination inputs A, and the magnitude of the rigid-body modes

are determined in a coordination subproblem. Alternate ways of modifying

subproblem (3.20) to make its solution bounded are to add terms to make the

objective function strictly convex using the proximal point algorithm as in [7],

or using the separable penalty method of [62]. Another penalty method that

can convexify the problem is reported in [13].

From the preceding discussion, any decomposition of statement (3.1)

should explicitly account for the rigid-body modes of the substructures. One

such decomposition method follows. Let u2 = U2 +R2a2 where U2 satisfies the

supplementary condition RTu2 = 0 (i.e., U2 is orthogonal to the rigid body

modes). The minimization problem given by statement (3.18) then becomes

min (_uTKlul + 1UTK2U2
(ul, Us, as) 2

--FTul -- FT(u2 + R2a2)) (3.21)

subject to: Blul +B2(U2 +R2a2) = 0

l_U2 = 0



Using a hierarchical decomposition with goal coordination, three lower-level

subproblems can be formulated. The first is identical to statement (3.19), the

second is

and the third is

1 T _ + ATB2U2)min \(_U 2K2U2 FTu2
U2

subject to: RTu2 = 0

(3.22)

rain -FTR2a2 + ATB2R2_2 (3.23)
Et_

The objective function of subproblem (3.22) is strictly convex relative to

the subspace {U2 I RTU2 = 0}, and thus the subproblem will have a bounded

solution. However, subproblem (3.23) will have no finite solution unless A sat-

isfies the restriction -FTR2 + ATB2R2 = 0 v. This restriction on A becomes

a constraint in the standard goal coordination subproblem that maximizes the

Lagrangian function (as a function of A) in the dual formulation of statement

(3.21). This restriction is also used in the conjugate projected gradient ap-

proach to solving the coordination subproblem in [12]. One expression for the

coordination subproblem can be found from the following necessary conditions

for the structural-response problem given by statement (3.21)

Klul-FI+BTA = 0

__o
(3.24)

(3.25)

(3.26)

(3.27)

R_(F2- BTA) -- 0

Blul +B2(U2+R2a2) = 0

where A are the Lagrange multipliers for the first constraint in statement (3.21),

# are the Lagrange multipliers for the second constraint in statement (3.21),

45
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and the matrix t7(2is the augmentedstiffnessmatrix givenby

I_2 = [ K2pgl R2[01] (3.28)

Because the matrices B_ in necessary conditions (3.24-3.27) are Boolean, the

Lagrange multipliers A are simply the interface forces between the substruc-

tures. Using equation (3.25), the condition RTK2 = [0], and the fact that

the columns of R2 are linearly independent, equation (3.26) implies that the

Lagrange multipliers # are equal to zero. Note that equation (3.24) is the

necessary condition equation for subproblem (3,19), and equation (3.25) is the

necessary condition equation for subproblem (3.22).

The structural-response coordination subproblem that determines A and

ct2 is obtained by substituting the solutions of equations (3.24) and (3.25) into

equations (3.26) and (3.27). This substitution yields the equation

where the matrix M is given by

E°l] l
-(S2R2) T [ [0]

Note that the inverse of I_2 used in equations (3.29) and (3.30) exists because of

the inclusion of the constraint that U2 is orthogonal to the rigid-body modes.

Thus, one approach to the calculation of the structural response (i.e., the nodal

displacements) is the following steps: 1) factor the matrices K1 and I_2; 2) use

these factored matrices to formulate the matrix M and the right hand side

of equation (3.29); 3) solve equation (3.29) for ,k and a2; and 4) and solve

subproblem (3.19) (or equation (3.24)) and subproblem (3.22) (or equation



(3.25)) for ul and U2, respectively.The explicit computation of matrix M is

not necessaryin the combinedanalysisand optimization approachdescribed

in the next section.
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3.5.2 Derivation of EP Design Formulation 4

In this subsection, the structural-optimization problem is decomposed into sub-

problems that perform the structural analyses and sensitivity analyses of each

substructure and a single subproblem that performs the coordination of the

structural analyses as well as the optimization of the design. This formula-

tion is denoted as EP design formulation 4. The decomposition method for

structural analysis derived in the previous section is extended to multiple sub-

structures. Then the design formulation is derived starting with a simultaneous

analysis and design formulation. The simultaneous analysis and design method

was initially investigated in [46]. It is utilized in [22] for linear structural anal-

ysis, and in [20] for nonlinear structural analysis. In the present simultaneous

analysis and design formulation, in which minimum weight is the design goal,

both the structural displacements and the sizing variables are utilized as design

variables, and the optimization constraints are the equations governing struc-

tural response (treated as equality constraints) as well as the usual inequality

constraints that ensure that the design meets the strength, buckling, and other

design requirements. Formulation 4 has the following features: 1) the analysis

and sensitivity derivatives of each substructure are independent and can be

performed in parallel (although the overall optimization procedure is still iter-

ative); 2) the resulting design is optimal; but 3) the structural response may

not be compatible between the substructures until the design converges.
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Structural Analysis using Multiple Substructures

The substructural analysis method developed previously is generalized to mul-

tiple substructures in this subsection. With multiple substructures, the use of

precise, although somewhat cumbersome, notation is necessary to avoid confu-

sion. Assume that there are M substructures, and that there are m substruc-

tures (0 < rn < M) unrestrained from rigid-body motions if separated from the

rest of the structure. The n_ displacement degrees-of-freedom of substructure

i are denoted by ui = (u_,l,..., ui,,_i) T. The substructures unrestrained from

rigid-body motions are ordered to be the last m substructures. These substruc-

tures have displacements denoted by u_ = U, + P_c_i where R_ is the matrix

containing the rigid-body modes of substructure i, and Ui are displacements

orthogonal to these rigid-body modes. The orthogonality relation for Ui is ex-

pressed by RTu_ = 0. There are n I independent relations governing the com-

patibility of the substructures, and the resultant equivalencing of degrees-of-

freedom at common interface nodes in the different substructures is represented

by the set A of n _ 4-tuples defined by A = { (j, k, p, q) I J < k and uj,p =---uk,q }.

In the definition of set A, redundancies in the equivalencing of degrees-of-

freedom are omitted. For example, a degree-of-freedom shared by three sub-

structures need only be equivalenced between two pairs of substructures, not

all three pair-wise combinations. The compatibility constraint equations (i.e.,

the equations that enforce compatibility between the substructures) are then

defined in the following manner. The r th compatibility constraint equation will

depend on a degree-of-freedom in substructure j if either the first or second

element of the r th 4-tuple in A is j. These compatibility constraint equa-

tions are expressed explicitly by defining the signed Boolean matrices Bj for
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j = 1,..., M which have dimensions n / x nj. Matrix Bj has a 1 at location

(r,p) if the r th 4-tuple in A has the components (j,-,p, .), and it has a -1 at

location (r, q) if the r th 4-tuple in A has the components (-, j, -, q). Otherwise,

the entries in matrix Bj are zero. Thus, the compatibility constraint equa-

tions for all the substructures are symbolically represented by the system of n I

equations:
M

_-'_ Biui =0 (3.31)
i=1

The definition of the Boolean matrices Bj in the present section reduces to the

previous definition of the Boolean matrices for the case of only two substruc-

tures.

Utilizing these definitions, the minimization problem for the structural

response given by statement (3.21) generalizes to:

min

Ul, • . . , UM-m,

VM'_m+l, • . . , UM_

O_M-m+l_ • , . , OLM)

M-m

E (luTKiui- FTui)
i=1 \2

+ _ UTKiU,- FT(u, + Ria,)
i=M-m+l

M- rn M

subject to: _ Biui + _ Bj(U_ + Rjc_3) = 0 (3.32)
i=I j=M-m+l

RiUi = 0 for i=M-m+l,...,M

The necessary conditions for the minimization problem given by statement (3.32)

are

Ki

Kiui - Fi + BTx = 0

0 1 =0

for i = l,...,M- m

for i=M-m+l,...,M (3.33)

RT(F - BT,x) = o for i = M - m + 1,... ,M
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along with the first constraint equation given in statement (3.32). Here ,k are

the Lagrange multipliers corresponding to the first constraint equation in state-

ment (3.32), _i are the Lagrange multipliers for the last constraint equations

in statement (3.32), and the matrices I_i for i -- M - m + I,..., M are the

augmented stiffness matrices given by

= a_t[0]

The second equation in necessary conditions (3.33) combined with the condi-

tions RirKi = [0] for i = M - m + 1,..., M, and the fact that the columns of

1:14 are linearly independent implies that the last equation in necessary condi-

tions (3.33) can be replaced with the condition that the Lagrange multipliers

p_ are equal to zero. The structural responses ui for i = 1,..., M - m, and

(Ui, p_) for i = M - m ÷ 1,..., M are found by solving the first and sec-

ond equations of necessary conditions (3.33), respectively, after the vector A is

determined.

The vector A may be determined simultaneously with the rigid-body

displacements c_ for i = M - m + 1,..., M by a coordination subproblem. A

coordination equation may be found by substituting the symbolic solutions for

u_ and Ui into the compatibility constraint equation in statement (3.32), and

solving this equation simultaneously with the last equation in necessary condi-

tions (3.33). The following matrix equation gives the coordination subproblem:
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M

X

OZM-m+l

OLM-m+2

OLM

zM_ -m BiK_-IFi + ziM==u_m+l [B_ I [01] I_T' [FT I0W]T
T

--RM_m+IFM-m+I
T

--RM_m+2FM-m+2

where the matrix M is given by

_M-m BiK_-IBT+i=1

_iMM_m+l [Si [ [0][IZ_ -1 [Bi [[011T

--(BM-m+IRM-m+I) T

-- 'BM_m+2RM_m+2) T

--(BMRM) T

-R_FM

--BM-m+IRM-m+I

[0]
[0]

[0]

(3.35)

I... I--BMRM

[0]
•.. [0]

[0]
(3.36)

Statements (3.35) and (3.36) are the generalizations of statements (3.29) and

(3.30) for multiple substructures. These statements are given for completeness,

but are not utilized in the following design formulation.

Decomposition of the Structural-Design Problem

The starting point for the design decomposition is a simultaneous analysis and

design formulation. The constraints are assumed to have the form g_(vi, ui)

for i = 1,...,M in this derivation. The simultaneous analysis and design

formulation is given by

rain

Vl_ . . . _VM_

Ul, • . . , UM-m,

VM-m+l , • . . UM,

OLM-m+I_ • . . , OtM,

•_, I£M_rn+l,..., I'%M)

subject to:

M

i--I

gi(vi, ui) _< 0 for i=l,...,M-m
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gi(vi, Ui + P_o.) _< 0

K_(vi)ui- Fi +BTA = 0

for i = M - m + l, . . . , 5,l

for i=l,...,M-m

for i = M - m + l, . . . , M

M-m M

Biui + _ Bj(U3 + Rjaj) = 0 (3.37)
i=l j=M-m+l

RT(F_- BTx) = 0 for i= M-m+ l,...,M

This expression is simplified by the following steps: 1) specify that ui for

i = 1,...,M-m andUi for i = M-m+I,...,M (which are implicit functions

of vi and X) are known from solutions of structural-response subproblems (such

as problems (3.19) and (3.22)), and thus identically satisfy the first two equality

constraints in statement (3.37); and 2) for the remaining functions in (3.37),

replace gi, ui, and Ui with their first-order Taylor series approximations about

the point (vi, ai, X). The design variables for the structural-sizing subproblem

are given by x0 -- (Vl,...,VM, aM-m+1,..., aM, X). These simplifications

reduce statement (3.37) to the following structural-sizing subproblem

M

min _ Wi (vi)
X0 _ (VI_..- _VM, i=1

OtM_rn+l , . . . _ OgM, )k)

t < vi < v usubject to: v i _ _

Ogi ,X Ogi (.X - X,) < 0gi + _vi (vi- v °) + OX Iv,

Og, Og,gi + (vi- v °) + (X- Xi)
Ovi A,a, OX v,,a,

+ Og_._i (ai - o?) < 0

Oai Iv,,A

0u,au, (v,- v°)+ (_- x,))+.=. o ,1,

for i = 1,...,M

for i=l,...,M-m

for i= M-m+ l,...,M

(3.3s)



OUj
q- £ Bj(Uj 4- (vj - v °)

j=M-rn+l _ A

0Uj (X- hi) +R3 j) = 0
+ Oh v_

RT(Fi - BTA) = 0
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for i= M-m + l,...,M

t and v_ that are adjusted during the solution processwhere move limits v i

have been introduced to ensure convergence. In this subproblem, the design

variables ,k are coupling variables, and the compatibility constraints (the next

to last constraint shown in statement (3.38)) are coupling constraints. Be-

cause of the relatively small number of these coupling variables and coupling

constraints, a further decomposition of this structural-sizing subproblem into

smaller subproblems could be attempted using the method of Ritter ( [29], pp.

276-283), or the method of Ha [18]. However, no further decomposition of the

structural-sizing subproblem is undertaken in the present dissertation.

The structural-response subproblems, one for each substructure, deter-

mine the structural displacements, the design constraints, and their derivatives

with respect to the elements of x0. The design variables of the structural-

0 hi 'response subproblems for substructures i = 1,..., M - m are x_ = (u_, v,,

Oui/Ovilh, Oui/Oh]vi,gi, Ogi/OVil.X, Ogi/OhIv_). The necessary condition

form of these subproblems is

Kiui = F_-BTA

0
V i = V i

hi = h

gi = gi(vi, Hi)
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Ki Oui _

Ov_ A

Ki OA Ivi

Og_,3 =
Ovi,k A

-_k09 i'j v i =

OKiui

OV i
(3.39)

= -BT

gi,j ((v_ + e_Avi,k), (u, + Oui/Ovil,k e_'Avi,k)) -- gi,3

Z2kVi,k

gi,j (vi, (ui + 0ui/0Alv, e_AAk)) -- gi,j

AAk

for i = 1,..., M - m. The design variables of the structural-response subprob-

0 )_i, otO OUi/Ovil,)_,lems for substructures i = M-m+l,..., M are xi = (Ui, v i , ,,

0Ui/0Alv i , g_, Ogi/Ovilx,a_, 0g_/0AIvi,_, Ogi/OO_lvi ' A)" The necessary

condition form of these subproblems is

V 0 _ V i

,k i = )_

0
C_ i _ C_ i

gi

g_

0U. A

09i,Jl =
0---_/,k ,,_,C[ i

Ogi,j vi,C_i

OVi
(3.40)

, e k Avi,k gi,jgij ((vi + e_'Avik), (Ui + OUjOvil.X "¢' + R4a,)) -

AVi,k

gid (vi, (Ui + cOUi/O,Xlv, e_AAk + R4o_i)) - g_,j

AAk



cOgi,j gi,j(vi, (Ui + R/(_i + e_A_i,k))) -- gi,j

Och,k v,,A Aai,k

for i = M- m + 1,..., M. Several features of the subproblems defined by state-

0 o and )_iments (3.39) and (3.40) should be noted. The design variables vi, ai,

preserve the values of the structural-sizing variables at which the sensitivity

analyses are performed for use in the structural-sizing subproblem. The sen-

sitivities of the substructure displacements with respect to the sizing variables

v_ are obtained by differentiating the first two equations in statement (3.33)

with respect to the sizing variables in the same manner that the sensitivities

in statement (3.10) are obtained. However, the computational effort is greatly

decreased when using substructures since both the order of the systems to be

solved and the number of right hand sides (equal to the number of substructure

sizing variables) to be formed and evaluated are reduced. The derivatives with

respect to the Lagrange multipliers )_ are obtained by differentiating the first

two equations in statement (3.33). The cost for performing these sensitivity

analyses is also nominal because the order of the equations to be solved is small,

the right hand side contains many zero columns (the nonzero columns are equal

in number to the number of degrees of freedom that are equivalenced in the

substructure), and this right hand side needs to be formed only once. Finally,

the constraint derivatives are found using finite differences that incorporate the

displacement sensitivity derivatives, but if gio is a stress or buckling constraint

then i)gi,j/Ooq,klv,,X does not need to be computed since it is identically zero.

As a point of interest, the approximate sensitivity derivative formulation of

the previous section (i.e., design formulation 3) could be utilized to replace

the sensitivity derivatives in statements (3.39) and (3.40) during the solution
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process to provide further computational gains. However, this approach is not

pursued in the present dissertation.



Chapter 4

Numerical Results for Equilibrium

Programming Structural-Design Formulations

The equilibrium programming design formulations derived in the previous chap-

ter appear to offer significant computational benefits, and these benefits are

verified by example problems in the present chapter. Since design formula-

tions 1 and 2 are essentially methods currently utilized in structural design,

only formulations 3 and 4 are investigated in the example problems. The re-

sults using these formulations are compared with results using a conventional

optimization approach which is actually an implementation of formulation 2.

In subsequent sections, the implementation of the analysis and optimization

algorithms is outlined, the example problems are described, and the results

of using formulations 3 and 4 on these example problems are compared with

results using the conventional approach.

4.1 Implementation of Numerical Algorithms

In this section, general implementation issues common to all the formulations

are discussed first. Then implementation details specific to formulations 3 and

4 are described.
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4.1.1 General Implementation Issues

For practical structural-design problems, an equilibrium-programming-based

solution algorithm should utilize existing finite element structural-analysis soft-

ware. The sensitivity derivative runstreams of [9] were modified, and several

FORTRAN routines were incorporated into the Engineering Analysis Language

(EAL) structural-analysis code [66] to solve the example design problems de-

scribed subsequently. Both a conventional solution approach and the equi-

librium programming design formulations are developed using this software

infrastructure. The sensitivity derivative runstreams utilize the semi-analytic

method, originally developed in [14], to compute the displacement sensitivity

derivatives. Derivatives of the stress and local buckling constraints are calcu-

lated using these displacement derivatives by a finite-difference approach. An

example of the finite-difference derivatives for general constraints is given by

the following expression:

0___gg= g(v + Avje}', u + Ou/OvAvje'_) - g(v, u) (4.1)
Ovj Avj

The sequential solution approach described in a previous chapter is

the solution approach chosen for all the examples in the present dissertation,

but estimates of the speedup due to parallelization of subproblems are given

for EP structural design formulation 4. In the sequential solution approach,

the structural-sizing subproblem and the structural-response subproblems are

solved alternately in a cyclical manner until the solutions from consecutive

cycles converge. In the present dissertation, the nonlinear, structural-sizing

subproblem is replaced with a linear programming approximation, which is an

approach that has proven to be very robust. Thus, when results using a con-
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ventional solution approachare discussed,this approachis sequential linear

programming (SLP).

The linear programmingmethod utilized is basedon the LI penalized

objective function method of [70]. In this reference, the objective function W

is replaced by a penalized objective function P given by

P = W + K E max(gi, 0) (4.2)

where K is a constant that must be larger than the largest of all the Lagrange

multipliers of the constraint function vector g. In the penalized objective func-

tion method, the maximum function in (4.2) is implemented by using an ad-

ditional positive design variable as a slack variable for each constraint. Each

slack variable is subtracted from its constraint, and also used in place of the

maximum function in equation (4.2). This penalty method ensures that if no

feasible solution is possible, a solution is found that will minimize the mag-

nitude of the vector of violated constraints using the L1 (i.e., the sum of the

absolute values) norm. To ensure that the linear programming approximation

of a subproblem has sufficient accuracy, move limits are used as additional side

constraints on the sizing variables. Move limits are easily incorporated within

the EP theory given in [68]. In the present dissertation, the move limits on

the design variables are computed by limiting the magnitude of the allowable

change to a factor times the design variable values. A move-limit-factor control

strategy is utilized in the example problems described subsequently. The move-

limit factor is typically initialized with a value of 10%. This factor is reduced

by half whenever a criterion indicates a reduction is necessary. The criterion

used in the present study stipulates that the move-limit factor is reduced when
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the penalizedobjective function (4.2), calculated exactly using the latest de-

sign information, increasesfrom the previously calculatedvalue. No method to

increasethe move-limit factor, suchasgiven in [70], is used.Thus, the result-

ing designhistory is somewhatsensitiveto the valueassumedfor K. For very

large values of K, the optimization procedure favors remaining in the feasible

region over minimizing the objective function. In practice, using a very large

value of K leads to a premature reduction in the move limits during the design

process, and slows the convergence to the final design. In the reported results,

the value assumed for K is approximately twice the value of the largest La-

grange multiplier of the design constraints obtained during the design history.

The specific routine incorporated within EAL to solve the linear programming

problems is the sparse MINOS routine [33].

For some of the larger structural models studied, there can be thousands

of elements that must be examined for local stress and buckling constraints,

and these elements must be optimally sized. To reduce the number of design

variables, the design variable linking method of [39] is utilized. Specifically,

the finite element model is partitioned into regions, and within each region, all

the elements are sized by the same design variables. In addition, to reduce the

number of constraints, the local constraints within each region are "lumped"

using the Kresselmeier-Steinhauser cumulative constraint [27]. These reduc-

tion methods are utilized only for the civil transport problems described sub-

sequently.



4.1.2 Implementation Issues for Design Formulation 3

The flowchart in figure 4.1 illustrates a computer implementation of formula-

tion 3 for solving a structural-designproblem. An iteration is representedby

a circuit through outermost loop in the figure. In the results to be described

subsequently,the iterations shownare describedaseither approximate or ex-

act. An approximate iteration is defined as a passthrough the outer loop of

figure 4.1 utilizing the approximate sensitivity derivatives; an exact iteration

is defined as a passthrough this outer loop utilizing exact sensitivity deriva-

tives. The solution method for formulation 3 is similar to that of conventional

approximation-baseddesignmethods,suchasthe SLP method that is usedfor

comparisonsin the resultssection,exceptfor the logic shownbetweenthe boxes

labeled "Exact Structural Responseand Constraints" and "Structural-Sizing

Subproblem." In a flowchart for a conventionalapproximation-basedmethod,

the "No" branchof the "P Increased?"decisionbox wouldsimply go to "Exact

Sensitivity Derivatives," andthe "Yes" branchwould goto "ResetDesign" and

then to "ReduceMove Limits." Becausethe iterations utilizing approximate

sensitivity derivativesaresomuchlessexpensivethat thoseutilizing exact sen-

sitivity derivatives,the most computationally efficientprocedurewould utilize

approximate constraint sensitivity derivatives as often aspossible,and would

calculate exact constraint sensitivity derivatives only when the inaccuracyof

the approximate sensitivity derivatives inhibits convergence.This approach

is utilized in figure 4.1 where the criterion for choosingto update the sensi-

tivity derivatives instead of calculating exact sensitivity derivatives is based

on the behavior of the L1 penalized objective function of the structural-sizing

subproblem.
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I Approximatel I
SensitivityII
Derivatives] I

Exact 1
Structural Response

and Constraints

gl' Vl

Reset Design I

Reduce Move
Limits

Exact

Sensitivity
Derivatives

Structural-Sizing
Subproblem Vo, go' _go/_)v

Figure 4.1: Flowchart of the solution procedure for structural design formula-

tion 3.



The penalizedobjective function is also utilized in the strategy for ad-

justing the move-limit-control factor in a variation of the approachdescribed

in the previoussubsection.If the valueof P given by equation (4.2) (and com-

puted within the box labeled "Exact Structural Response and Constraints" in

figure 4.1) decreases after an approximate iteration, that iteration is accepted.

If the value of P increases after an approximate iteration, the iteration is re-

jected and exact sensitivity derivatives are calculated at the design conditions

existing at the beginning of the rejected approximate iteration. Thus, an exact

iteration begins. If the value of P increases after an exact iteration, the results

of the exact iteration are rejected, the move-limit factor is decreased by half,

and the exact iteration is restarted using the design conditions existing at the

beginning of the rejected exact iteration. The costs of a rejected iteration are

the expenses of calculating solutions to subproblems (3.14) and (3.15) where

no sensitivity calculations are performed for the latter subproblem. Both these

expenses are minor compared to the cost of an exact sensitivity analysis when

the structural-design problem is large.
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4.1.3 Implementation Issues for Design Formulation 4

A flowchart for the implementation of design formulation 4 would be very sim-

ilar to that for a conventional approximation-based method as described in the

previous subsection. However, instead of performing analysis and sensitivity

calculations for a single structure, the analyses and sensitivity calculations for

n substructures are performed. The penalized objective function incorporates

only the inequality constraints, and no slack variables are used with the equal-

ity constraints in the structural-sizing subproblem. In the example problem



64

for designformulation 4, the structural-responsesubproblemsfor the substruc-

tures are solvedin sequence,although they could be solved in parallel. The

sublibraD"capability of EAL is usedextensivelyin solving the subproblemsso

that. the data associatedwith eachsubproblemarestored in separatelibraries.

In addition, the ability to manipulate matrix data blocks and to add extra

terms to matricesis utilized in forming the augmentedstiffnessmatrices. How-

ever, becausethe augmentedstiffnessmatrices are nonpositive definite, some

experimentation in determining the order in which the degreesof freedomare

eliminated in the matrix factorization is necessaryto avoid obtaining erroneous

singular matrix messages.Typically, the degreesof freedomfor the vectors tt i

would have to be eliminated before completing the elimination of the degrees

of freedom for the vectors U_.

4.2 Description of the Example Problems

The four example problems used to evaluate the equilibrium programming de-

sign formulations are described. The first three example problems are utilized

only with design formulation 3, and the final example problem is used only with

design formulation 4. The first example problem is the common ten-bar-truss

weight optimization problem that is described in several references. The second

example problem is a more complex high-speed transport wing weight optimiza-

tion problem, and the third example problem is the weight optimization of a

half-symmetric model for an entire high-speed transport vehicle. The use of

updated sensitivity derivatives on the first two example problems has been in-

vestigated by the author previously [52], but the solution method used for the

present results is an improvement over that of reference [52]. The constraints



for the first structural optimization exampleinclude stress,displacementand

minimum gaugeconstraints. The secondand third exampleproblems include

additional local buckling constraints,but the third exampleproblem doesnot

include displacementconstraints. This third example is the largest problem

investigatedin the presentdissertationboth in terms of the number of design

variablesand the number of displacementdegreesof freedom. The fourth ex-

ample problem is the minimum weight designfor a transmission tower that is

decomposedinto substructuresin two ways. This exampleproblem usesonly

stressand minimum gaugedesignconstraints. Theseproblemsare described

in more detail in subsequentsubsections.
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4.2.1 Ten-Bar-Truss Example Problem

The minimum weight ten-bar-truss exampleproblem is illustrated in figure

4.2. This problem is describedin [19] (p. 244), but a brief description is

repeatedhere for completeness.The vertical and horizontal membersareeach

360inchesin length. The material propertiesassumedare those for aluminum

with a failure stressof 37,500 psi, a Young's modulus of l0Tpsi, a Poisson's

ratio of 0.3, and a density of 0.1 lb/in 3. Two 100,000-1bloadsare applied, as

shownin figure 4.2, and the upper displacementlimits 61= 62 = 2.0 in. for

the displacement constraints are shown in the figure. The design variables are

the cross-sectional areas of the numbered bars in figure 4.2 which all have the

initial value t0 in 2 that yields an infeasible initial design. The minimum gauge

assumed is 0.1 in 2, and the penalty coefficient K utilized for this problem is

10,000 lb.
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_)m6 T360 in. ,, 360 in._ []

- 61

_ 100,000 Ib 100,000 Ib

Figure 4.2: Schematic of geometry, loads, and displacement limits for the ten-

bar-truss example problem.

4.2.2 High-Speed Civil Transport Wing Example Problem

The second structural optimization example problem considered for EP structural-

design formulation 3 is the structural sizing of the wing for a proposed high-

speed civil transport concept described in [43]. The details defining this structural-

design problem are too numerous to list so only a summary of its features is

presented. The finite element model of the wing is shown in figure 4.3. The up-

per wing cover panels are removed in this figure to illustrate the rib and spar

web arrangement. The cover panels are titanium honeycomb-core sandwich

panels, and the shear webs are titanium sine-wave webs. The model is rela-

tively detailed with 1728 nodes (10,144 degrees of freedom) and 2447 elements.

A single load condition is analyzed in the structural response which represents

a 2.5g balanced, symmetric supersonic pull-up maneuver. There are 41 design

variables considered in the structural optimization. These design variables in-

clude facesheet thicknesses for the sandwich panels, honeycomb-core heights,

and sine-wave web gauges. The model uses a simple form of design variable
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m m

1930 in.

I' 726 in. "l

Figure 4.3: Finite element model of high-speed civil transport wing with upper

cover panels removed.
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linking such that each sizing variable controls multiple elements. There are

212designconstraints that arecumulativeconstraintsovergroupsof elements,

half of which are stressconstraints and the remainder are local buckling con-

straints. The most critical constraint in this example is a 12-foot limit on

maximum deflectionof the wing tip. The initial designutilized in this problem

is feasible.The penalty coefficientK utilized for this problem is 50,000 Ib, and

the value for the parameter in the Kreisselmeier-Steinhauser function [27] for

the cumulative constraints is taken to be 50.

4.2.3 High-Speed Transport Vehicle Example ProbIem

A third example problem considered is the structural optimization of a half-

symmetric model for an entire high-speed t_anspbrt aircraft 1. The finite el-

ement model of the vehicle is shown in figure 4.4. The cover panels and

webs are honeycomb-core sandwich panels having polymer-matrix composite

facesheets. The model is very large with 7301 nodes (43,806 degrees of free-

dom) and 14,293 elements. Two load conditions are analyzed for the structural

response: 2.5g and -1.0g balanced, symmetric supersonic maneuvers. This

model also uses design variable linking such that each sizing variable controls

multiple elements in a design region. There are 348 design variables considered

in the structural optimization. These design variables are the thickness of lam-

inates in three major directions (i.e., in directions oriented 0 °, 90 °, and ±45 °

relative to the primary load paths), and the honeycomb-core heights. The con-

straints in this example are minimum gauge side constraints, and constraints

1The structural model for this example has been supplied by the Boeing Company and

the results are presented without absolute scales in this dissertation under the conditions of

a NASA Langley Property Loan Agreement, Loan Control Number I922931.
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Figure 4.4: Half-symmetric, finite element model of the high-speed transport

vehicle.

of strength and panel buckling for each element in the model. These strength

and buckling constraints are incorporated into 260 cumulative constraints us-

ing the Kreisselmeier-Steinhauser function [27], one for each design region (the

value of the parameter in the Kreisselmeier-Steinhauser function is 50). The

initial design utilized in this problem is feasible, and the normalized penalty

coefficient K utilized for this problem is 0.053.

4.2.4 Transmission Tower Example Problem

The fourth example problem is a transmission tower weight optimization. The

geometry of the tower, the loading conditions, and the decomposition into sub-

structures is shown in figure 4.5. Results are presented for a decomposition

into two substructures (denoted as 1 and 2), and a decomposition into four

substructures (denoted as I, II, III, and IV). This example is similar to the
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Figure 4.5: Schematic of the transmission tower example geometry, loading,

and division into substructures.
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tower exampledescribedin [36], and becauseof the small number of interface

degreesof freedom,it is ideal for application of substructure techniques.The

tower is 634.5inchestall, and there are 72 nodes and 279 bars in the model.

An independent design variable is used for each bar cross-sectional area. This

approach creates a problem with 279 design variables by ignoring the symme-

tries in bar cross-sectional areas that would be present in a practical design

(since the loads could be applied to either set of tower arms, and in either the

positive or negative y direction). The material chosen for this example problem

is aluminum with properties and minimum gauges as described previously. The

cross-sectional areas of the bars all have the initial value 10-in 2 that yields a

feasible initial design. Only stress inequality constraints are utilized for this

example problem, and the value of the penalty coefficient K used is 160 lb.

4.3 Results for the Example Problems

The results for the four example problems follow. The design history of the

penalized weight objective function, the weight objective function, and the most

critical constraint are presented for each example. Also, normalized CPU time

comparisons for each example problem are presented. The results for these

problems have been computed using two types of RISC workstations.

4.3.1 Ten-Bar-Truss Example Problem Results

The CPU time required for one approximate iteration for the ten-bar-truss

problem is approximately 16% of the time required for an exact iteration. This

CPU time for an approximate iteration is only 21% larger than the cost of

performing the structural response analysis and constraint evaluation alone.



72

Therefore, efficiency benefits are expectedusing the approximate sensitivity

updates.

The convergencehistoriesfor the penalizedobjective function for 5 dif-

ferent casesare shownin figure 4.6. In this figure, results are shown using

formulation 3 with initial move-limit factors of 20_, 10%,and 5%. The move-

limit factors are denotedby MLI in this and subsequentfigures. In addition,

results using a conventionalSLP solution approachare shownfor comparison

with initial move-limit factors of 20%and 10%. The SLP results are identical

to formulation 3 if all iterations arechosento beexact. The solution procedure

is halted when the move-limit factor is reducedbelow 1%. The final penalized

objective functions and the final objective functionsin all five designcasesare

within a pound of eachother. The horizontal line shownin figure 4.6 shows

a penalizedobjective function value I_ higher than the final value, and this

penalizedobjective function value is usedasthe criterion for convergence.Be-

causethe initial designis infeasible,in all casesthere is a rapid decreasein the

penalizedobjective function asthe violated constraintsbecomesatisfied. The

20_, I0_, and 5%casesusing EP structural-designformulation 3 convergeaf-

ter 55, 92, and i01 iterations, respectively.This count of iterations is inflated

slightly becauseit includesa rejectedapproximateiteration beforeeveryexact

iteration after the first one. The 20%and 10%SLP casesconvergeat iterations

62 and 84, respectively. The large number of iterations required for all these

casesresults from the simple linearization of the designconstraints utilized in

the presentapproach.A moresophisticatedconstraint approximation scheme,

such as the use of a linearization in reciprocal variables,would decreasethe

number of iterations to convergence,but at the cost of making the structural-
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Figure 4.6: Comparison of penalized objective function iteration histories for

the ten-bar truss with different initial move-limit-control factors using EP

structural-desigu formulation 3, and using a conventional SLP approach.

sizing problem a NLP problem instead of a LP problem. A common trend for

all these results is that there is an increase in the number of iterations required

as the initial move-limit factor is decreased. It is somewhat surprising that the

formulation 3 case with a 20% initial move-limit factor converged sooner than

the comparable SLP case, because, for most of the design history, the penalized

objective function is smaller for the latter case. This result occurs because the

move-limit factor for the SLP case remains too large for most of the latter part

of the iteration history, and it is expected that, in general, more iterations are

required for formulation 3 to converge than for the comparable SLP method.

The number of exact sensitivity calculations prior to convergence for the 20%,

10%, and 5% cases using formulation 3 are 17, 12, and 11, respectively. Thus,

using the number of exact sensitivity analyses as an indicator of how much

work is required to solve this problem, formulation 3 is a very efficient method.
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The iteration histories of the objective function and the displacement

constraint on 61 are shown in figures 4.7 and 4.8, respectively. Only the cases

having initial move-limit factors of 20% and 10% are shown in these figures.

In all the cases shown in figure 4.7, the objective function value rises initially

because the optimizer is unable to satisfy the constraints in this initially in-

feasible design, as shown by figure 4.8, so it minimizes the penalized objective

function described previously. The objective function results for formulation

3 are typically larger than the SLP results during the initial iterations when

the move limits are large, but the results having the same initial move-limit

factor approach each other in the later iterations when the move limits have

been reduced. In figure 4.8, the constraints computed using formulation 3 ini-

tially show a more erratic iteration history than the comparable SLP results.

Also evident in this figure is the reduction in the magnitude of this erratic

constraint behavior, and the convergence to the constraint boundary as the

solution converges.

The number of iterations required for convergence, as shown in figure

4.6, is misleading because the approximate iterations of formulation 3 are so

much less expensive than the exact iterations. A more interesting view of these

same results is shown in figure 4.9 which uses a CPU time ordinate. The

CPU time shown is normalized by the CPU time required to complete the

first, exact iteration (this time is about 9 CPU seconds on a SGI IRIS 4D/35

workstation), so using this ordinate is nearly the same as the equivalent number

of exact iterations. (The first iteration has some additional set-up logic that

makes it longer than a typical exact iteration. The effect of set-up time is

noticeable for the ten-bar-truss problem since this problem is small.) Using a
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Figure 4.9: Comparison of penalized objective function iteration histories us-

ing a CPU time ordinate for the ten-bar truss with different initial move-limit-

control factors using EP structural-design formulation 3, and using a conven-

tional SLP approach.

normalized CPU time ordinate, the 20_, i0_, and 5% cases using formulation 3

converge at ordinate values of 21.6, 22.3, and 22.5, respectively. The differences

between these convergence times are negligible even though the number of

iterations required for convergence is nearly doubled for a 5% initial move-limit

case compared to a 20% initial move-limit case. Because the updates to the

sensitivity derivatives are more accurate if determined from smaller changes

in the design variables, the cases with smaller initial move-limit factors can

utilize more approximate iterations before the degradation of the sensitivity

derivative accuracy causes an increase in the penalized objective function that

signals the need for an exact iteration. However, the smaller the initial move-

limit factor, the more iterations that are required to achieve convergence. Thus,

using formulation 3, there is a tradeoff in CPU time between the number of



approximate iterations that can be taken betweenexact iterations, and the

total numberof iterations. In this case,the reduction in the numberof required

exact sensitivity analyses,as the initial move-limit factor is decreased,nearly

balancesthe effect of the increasednumber of iterations on the CPU time

required for convergence.

The normalizedCPU timesrequiredfor convergenceof the conventional

SLP casesfor the 20% and 10% initial move-limit factors are 51.1 and 71.0,

respectively. In thesecases,the benefits of starting with large initial move-

limit factors is apparent since all the sensitivity calculations have the same

computational cost. These results indicate that for this particular problem,

formulation 3 utilizes lessCPU time than a conventionalSLP formulation by

a factor of 2.5 to 3.5.
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4.3.2 High-Speed Civil Transport Wing Example Problem Results

The CPU time required for oneapproximateiteration for the high-speedcivil

transport wing problem is approximately 8.5% of the time required for an

exact iteration, and is only about 1% larger than the cost of performing the

structural responseanalysisand constraint evaluationalone. The former value

is a reduction of relative CPU time to nearly half of the value for the ten-

bar-truss problem, and the reduction is primarily due to the increase in the

number of designvariablesfor the wing problem. The latter Valueindicates

that the constraint update and optimization stepsin an approximate iteration

are minor in computational cost comparedto the structural responseanalysis

and constraint evaluation.

The convergencehistories for the penalizedobjective function for five
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Figure 4.10: Comparison of penalized objective function iteration history for

the high-speed civil transport wing with different initial move-limit-control fac-

tors using EP structural-design formulation 3, and using a conventional SLP

approach.

different cases are shown in figure 4.10. In this figure, results are shown using

formulation 3 with initial move-limit factors of 20%, 10%, and 5%. Results

using a conventional SLP solution approach with initial move-limit factors of

20% and 10% are also shown for comparison. As in the ten-bar-truss problem,

the solution procedure is halted when the move-limit factor is reduced below

1%. However, there is greater variation in the final penalized objective function

among the design cases for this problem. In particular, the final value for the

20% case using formulation 3 is somewhat lower than the other cases. Because

of these variations, a penalized objective function value 1% higher than the

final value for the SLP case with a 10% initial move-limit factor is defined to

be the criterion for convergence. This penalized objective function value is

the largest final value for the five cases, and is shown by the horizontal line
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in figure 4.10. The 20%, 10c_, and 5% cases using formulation 3 converge

after 20, 30, and 45 iterations, respectively. However, the final value for the

20% case is achieved at iteration 27 at an appreciably lower value than the

"converged" value. The 20% and 10% SLP cases converge at iterations 22

and 25, respectively. Both the number of iterations required for convergence,

and the increase in the number of iterations required for convergence as the

initial move-limit factor is decreased are much smaller than for the ten-bar-truss

problem. The penalized objective function history for SLP using a 20% initial

move-limit factor has lower values than the comparable formulation 3 history

except for a surprisingly rapid reduction in the penalized objective function for

formulation 3 beyond iteration 12. The more rapid convergence of formulation

3 during the final iterations than the SLP approach is believed to be a function

of the different solution paths in design space having no general significance.

The 10% initial move-limit-factor cases yield results that are consistent with

expectations. Here the solution paths of the formulation 3 and the SLP cases

follow each other closely for the initial iterations before they diverge due to an

accumulation of errors in the sensitivity derivatives. The penalized objective

function for the SLP case is less than the value using formulation 3 throughout

the design history after the paths diverge. The number of exact sensitivity

calculations required for convergence for the 20%, 10%, and 5% cases using

formulation 3 are six, seven, and eight, respectively. Thus, the ratio of the

number of approximate iterations to the number exact iterations increases from

2.3 for the 20% case to 4.6 for the 5% case because, as in the ten-bar-truss

problem, the accuracy of the updates is greater for the smaller initial move-

limit factors.
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The iteration histories of the objective function and the displacement

constraint on the wing tip deflection are shown in figure 4.11 for the cases

having an initial move-limit factor of 10%.As seenin the figure, the objective

function valuesgenerallydecreaseto the minimum weight designsincethe ini-

tial design is feasible. The objective function results showthat formulation 3

and the SLP results agreewell for the initial iterations, whenthe displacement

constraint is not active. Then from iterations 5 through 18,objective function

for formulation 3 decreasesat a slightly lower averagerate than the SLP objec-

tive function, partially due to the inclusion of results from rejectediterations.

The displacementconstraint iteration history for formulation 3 showsinitial

satisfactionof the constraint, a grossviolation of the constraint for iterations 4

and 5, and a fairly closetracking of the constraint boundary for the final iter-

ations. Thus, the convergenceof the objective function and the displacement

constraint are seento be only moderately affectedby the useof approximate

constraint sensitivity derivatives.

The penalizedobjective function results for this problem are shown in

figure 4.12usinga CPU time ordinate. The CPU time shownis normalizedby

the CPU time required to completethe first, exact iteration (this time is about

1830CPU secondson a SGI IRIS 4D/35 workstation). Usingthe normalized

CPU time ordinate, the 20%, 10%,and 5% casesusing EP structural-design

formulation 3 convergeat ordinate valuesof 6.3, 9.6, and 11.6, respectively.

Here, the effect of the initial move-limit factor on the CPU time favors the

large initial move-limit factors simply becausethere are fewerexact iterations

for those cases. The normalized CPU times required for convergenceof the

conventionalSLP casesfor the 20% and 10% initial move-limit factors are 18.5
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and 22.3,respectively.Theseresultsindicate that for this wing designproblem,

formulation 3 requires lessCPU time than conventionalSLP formulations by

about a factor of 2.

4.3.3 High-Speed Transport Vehicle Example Problem Results

The CPU time required for oneapproximateiteration for the high-speedtrans-

port vehicleproblem is approximately 1.5%of the time required for an exact

iteration. Thus becauseof the large number of designvariables, the cost of

an approximate iteration for this problem is insignificant comparedto the cost

of an exact iteration. The cost of an approximate iteration is only about 2%

larger than the cost of performing the structural responseanalysisand con-

straint evaluation alone. This slight increasefrom the previouswing example

is possibly due to the larger number of designvariables in the optimization

step for this problem, but may alsobe an effectof the useof different types of

computersfor solving thesetwo cases.

The convergencehistoriesfor the penalizedobjective function, normal-

ized by its initial value, for three different casesare shownin figure 4.13. All

results for this problem are obtained utilizing an initial move-limit factor of

10% becausethe computational cost of this problem prohibited investigation

of results for different initial move-limit factors. The three casesshownin the

figure arelabeledformulation 3, modified formulation 3, and SLP. The need for

and the definition of the modified formulation 3 requires further explanation.

The final designs (i.e., the sizing-variable values when the move-limit factor is

reduced below 1%) for the formulation 3 and SLP cases are appreciably differ-

ent in figure 4.13. These differences in the final designs makes it difficult to
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Figure 4.13: Comparison of penalized objective function iteration history for

the high-speed transport vehicle using EP structural-design formulation 3, us-

ing modified EP structural-design formulation 3, and using a conventional SLP

approach.

compare the convergence characteristics of the two approaches. For instance,

when using a convergence definition as in the previous example problems (i.e.,

when the penalized objective function is at a value 1% higher than the final

value of the SLP case), the move-limit factor at convergence for the formula-

tion 3 results is 10% while the move-limit factor for SLP is 2.5%. In addition,

results to be shown subsequently demonstrate significant constraint violations

for formulation 3 when using this convergence definition. These difficulties in

comparing convergence characteristics are overcome by using a less conserva-

tive move-limit-factor reduction strategy, namely the modified formulation 3.

In the modified formulation 3, the move-limit-factor control of formulation 3 is

retained except that, if the first approximate iteration following an exact itera-

tion would increase the penalized objective function, the design is reset to the
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valuesexisting before the iteration, and the approximate iteration is repeated

with the move-limit factor reduced by half. Using the modified formulation

3, the move-limit factor is 1.25% and the constraints are better satisfied at

convergence. The final designs for the modified formulation 3 and SLP cases

are much closer, as demonstrated in figure 4.13, which allows meaningful direct

comparisons between these two methods.

In figure 4.13, formulation 3 "converges" in 26 iterations, modified for-

mulation 3 converges in 34 iterations, and the SLP case converges in 21 itera-

tions. However, as mentioned previously, the present definition of convergence

is not appropriate for formulation 3 which has a final value for the penalized

objective function that is much lower than the final value for the modified for-

mulation 3 and the SLP cases. The solution paths of the formulation 3 and the

modified formulation 3 cases follow each other closely for the initial iterations

before they diverge due to move limit reductions in the modified formulation.

The number of exact sensitivity calculations required for "convergence" for

formulation 3 is ten, and for convergence for modified formulation 3 is eleven.

The iteration histories of the objective function and the most critical

stress constraint (i.e., the constraint having the largest Lagrange multiplier)

are shown in figure 4.14 for the cases using EP structural-design formulation

3, using modified EP structural-design formulation 3, and using a conventional

SLP approach. As seen in figure 4.14, the objective function values for all three

cases agree prior to iteration 5, and beyond this iteration number the formula-

tion 3 objective function values follow a more erratic path due to errors in the

sensitivity derivatives that lead to rejected iterations. The two formulation 3

cases diverge from a common path at iteration 12 where the move-limit factor



for the modified formulation is decreased. The final value for the objective

function is appreciablylower for formulation 3 caseindicating a different final,

and more optimal, design than the other cases. The crossoverof the objec-

tive function valuesfor the formulation 3 and the SLP casesthat occursnear

iteration 18 in figure 4.14doesnot occur for the penalizedobjective function

in figure 4.13becausethe constraint histories using formulation 3 havelarger

violations than the SLP case.Theseconstraint violations for the formulation 3

results are dueto the 10%move-limit factor being retained in all iterations up

to "convergence",and are typified by the stressconstraint in figure 4.14. The

stressconstraintsfor modified formulation 3 and SLP in this figure havesmall,

but not insignificant, violations at the iteration numberswhere the solutions

are said to be converged,and the violation is nearly 10%when the penalized

objective function for formulation 3 achievesthe "converged"value in figure

4.13.

The penalizedobjective function results shownin figure 4.13 are re-

peated in figure 4.15 using a CPU time ordinate. The CPU time shown is

normalized by the CPU time required to complete the first, exact iteration

(this time is about 7200 CPU seconds on a Digital DEC 3000 Model 500 work-

station). Using the normalized CPU time ordinate, formulation 3 "converges"

at an ordinate value of 10.4, modified formulation 3 converges at 11.5, and

the conventional SLP approach converges at 19.1. Because of the insignificant

cost of the approximate iterations in the EP formulations for this problem, the

normalized CPU time essentially measures the cost of performing the exact

sensitivity analyses. In spite of the large difference in the number of iterations

to convergence, there are only small differences in computational effort between

85
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formulation 3 and the modified formulation 3 for this problem. Comparingthe

modified formulation 3 andthe SLPcasesfor this vehicledesignproblem, mod-

ified formulation 3 utilizes lessCPU time than conventionalSLP formulations

by a factor of nearly 1.7.
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4.3.4 Transmission Tower Example Problem Results

In this subsection, results are presentedfor the minimum weight design of

the transmissiontower problemusingEP structural designformulation 4 with

decompositionsinto two and four substructures.Resultsfrom the SLPsolution

for the entire towerstructure arealsopresented.No movelimits areutilized for

the interface forceand the rigid-body modedesignvariablesin the structural-

sizingsubproblemfor formulation4results. The initial move-limit factor for the

sizing designvariablesis 10_0for all cases.There are only minor differences

between the iteration histories for the objective function and the penalized

objective function, so only the former is described. The iteration histories

for the objective function and the most critical stressconstraint (i.e., for the

vertical member with maximum compressionin the lowest bay) are shownin

figure 4.16usingthe threepartitions of the tower into substructures.The three

casesare indistinguishable in the figure, and convergenceto a weight that is

1% larger than the final value of 1212lb occursby iteration 42. The most

critical stressconstraint value increasesto overshootthe constraint boundary

by iteration 9, but rapidly recoversto track closely the constraint boundary

thereafter.

The compatibility and orthogonality equality constraintsin structural-

sizing subproblem(3.38)havebeenfound to convergerapidly for this example
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Figure 4.16: Comparison of objective function and most critical stress con-

straint iteration history for the transmission tower example using EP structural-

design formulation 4 with two and four substructures, and using a conventional

SLP approach for the entire structure.

problem. After 2 iterations, the residuals of the interface displacement compat-

ibility constraints are below 0.026 in. for the two substructure partitioning, and

below 0.016 in. for the four substructure partitioning. There is some oscillation

in the value of these residuals during the solution process, but at convergence

the residuals are below 2.8 x 10 -5 in. and 1.7 x 10 -4 in. for the two and four

substructure cases, respectively. The orthogonality equality constraints in sub-

problem (3.38) are essentially satisfied after the first iteration, with residuals

of order 10 -l° lb or smaller throughout the solution process.

A summary of the CPU timing results are shown in table 4.1. In this

table, the three columns denoted by 1 substr., 2 substr., and 4 substr, show

results for the SLP case, and the two and the four substructure cases using

formulation 4, respectively. The CPU times for analyses of the structural re-
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1 Substr. 2 Substr. 4 Substr.

Number Equality Constraints 0 18 54

Substructure ID All 1 I

Number Sizing Variables ' 279 140 82

Analysis CPU Time 0.0130 0.0050 0.0027

Sensitivity CPU Time 0.9822 0.2136 .....0.0721

Substructure ID 2 II

Number Sizing Variables 139 58

Analysis CPU Time 0.0051 0.0027

Sensitivity CPU Time 0.2120 0.0443

Substructure ID III

Number Sizing Variables 74

Analysis CPU Time 0.0033

Sensitivity CPU Time 0.0660

Substructure ID IV

Number Sizing Variables 65

Analysis CPU Time 0.0022

Sensitivity CPU Time 0.0485

Optimization CPU Time 0.0028 0.0025 0.0038

Misc. CPU Time 0.0020 0.0010 0.0037

Total Serial CPU Time 1.0000 0.4391 0.2495

Estimated Parallel CPU Time 1.0000 0.2206 0.0823

Table 4.1: Comparison of normalized CPU timing results for the transmission

tower example using EP structural-design formulation 4 with two and four

substructures, and using a conventional SLP approach for the entire structure.
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sponsesthat include evaluations of the substructure constraints, and for the

sensitivity derivative evaluationswithin each substructure are shown. CPU

times arealso shownfor solvingstructural-sizingsubproblem(3.38),which op-

timizes the structural designand determinesthe coordination inputs, aswell as

for performing miscellaneouscomputations. All CPU times arenormal_izedby

the total CPU time requiredfor the SLP case.The time for oneiteration of the

SLP caseis 2840CPU secondson a SGI IRIS 4D/35 workstation. The next to

last row showsthe CPU time requirementsfor the solutionof the towerexample

problem usingthe serialapproachof the presentdissertation,and the last row

containsestimatesof the CPU time requirementof the longestcomputational

thread if the substructure analysisand sensitivity derivative calculationswere

donein parallel. Theselatter estimatessimply combinethe largestsubstructure

analysis and sensitivity CPU time values in table 4.1 with the miscellaneous

and optimization CPU time values.

As seen in table 4.1, even in the serial mode this example is well suited to

substructuring. Utilizing two substructures reduces the CPU time to less than

50% of the SLP value, and utilizing four substructures reduces the CPU time to

less than 25% of the SLP value. The parallel processing estimates reduce these

values to 22% and 8.2%, respectively. Thus, the computational benefits of the

substructuring formulation can be appreciable. The number of coordination

variables and the number of related coordination equality constraints increases

with the number of substructures, and this increase is reflected in the increase in

the optimization CPU time in going from two to four substructures. However,

the optimization CPU time for this problem is not large for any of the three

cases.



Chapter 5

Concluding Remarks

The overall goal of the present dissertation is the development of finite-element-

based, optimal, structural-sizing methods to solve large-scale problems more

efficiently than the current, commonly used methods. The approach taken

in the development of the new structural-sizing methods is to base them on

equilibrium programming (EP) formulations to take advantage of the theory

that exists in EP. A review of the commonly used methods indicated that the

most fruitful approach would be equilibrium programming formulations that

reduce the cost of sensitivity derivative calculations. So this approach was

utilized in the development of the formulations.

To acquaint the reader with equilibrium programming, background in-

formation was presented to describe the history of equilibrium programming, to

define an equilibrium programming problem, and to summarize conditions nec-

essary and sufficient for the existence of an equilibrium point. Properties that

distinguish an equilibrium point and an optimal point, and various solution

methodologies were also described.

Four equilibrium programming, structural-design formulations were then

developed. In developing these formulations, the implications of the necessary

conditions and the constraint qualification on solution existence were utilized.
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The first two formulations, namely formulations 1 and 2, are of interest be-

causethey are essentiallythe commonlyusedmethodsof fully stresseddesign,

and of using rapid, approximate analysesin a nonlinear-programming-based

structural designmethod. The former requiresno sensitivity derivativesof the

designconstraints, and the latter usessensitivity derivativessparingly to define

the approximate analyses. Thus, two commonlyuseddesignmethods can be

viewedasEP formulations. Two additional EP structural designformulations,

formulations 3 and 4, are also derived in the presentdissertation. In formula-

tion 3, additional EP subproblemsdefineinexpensive,approximate sensitivity

derivative updates that make formulation 2 even more efficient. In formula-

tion 4, a decompositioninto EP subproblemsis derivedin which the structural

responseand sensitivity derivativecalculationsof individual substructuresare

decoupled. For structures amenableto substructuring, the computational ef-

fort in calculating sensitivity derivativesin the substructureEP subproblemsis

greatly reducedfrom what would be required to calculate them using a single

large structure. Thus, all four formulations faithfully follow the approachof

reducing either the numberor the sizeof the sensitivity derivative calculations

required in the structural design.

Algorithms weredevelopedto implement the two new EP formulations

by utilizing a commercialfinite-element analysispackage.Another algorithm

that is basedon sequential linear programming (SLP) methods was used to

define a commonly usedmethod that is usedas a basisfor comparison. The

algorithm for formulation 3 is dependenton the penalizedobjective function

for determining the acceptability of using sensitivity derivative updates, and

for determining the move-limit factor reductions. This algorithm was applied



to three exampleproblems,ranging from a simple ten-bar-truss problem to a

large vehicleoptimization problem. As expected,the results showedthat the

computational cost of the exact sensitivity derivative calculations dominates

the overall cost, even for the small ten-bar-truss problem. The sensitivity

derivative updateswereshownto bemost effectiveonsmall problems,reducing

the computational cost of obtaining a convergedsolution by factors ranging

from 2.5 to 3.5. However, the sensitivity derivative updates also were useful on

a large problem with nearly 350 design variables, reducing the computational

cost by a factor of nearly 1.7.

I

An algorithm implementing the substructure-based, formulation 4 was

also developed and applied to a transmission tower with nearly 280 design

variables. This example has relatively few interface nodes between the sub-

structures, and thus was an ideal example for this formulation. The iteration

history for the weight and the most critical constraint using this formulation

with two partitionings of the structure were indistinguishable from the results

using the SLP approach. This result was surprising since the interface compat-

ibility constraints are not necessarily satisfied until the design converges. The

CPU time for the sensitivity derivative calculations using the SLP approach

was over 98°-/0 of the total CPU time, and this time was reduced by over 75%

when using four substructures. Thus, the substructure-based formulation can

be very effective in reducing the computational time. An approach combining

sensitivity derivative updates with the substructure-based formulation was not

attempted, but may show excellent promise to reduce computational time by

combining the best features of both formulations.

The development of structural design formulations based on equilibrium

93
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programming,describedherein,hasbeenverysuccessful.Although equilibrium

programming theory did not directly definethe new formulations, the success

of their developmentowesmuch to the recognition and utilization of the con-

ditions for EP solution existence. Thus, EP is really only a framework that

is used as a setting for developmentof new designmethods. The developer

still has the responsibility for identifying the sourcesof inefficiency in present

approaches,developingformulations that addressthese inefficiencies,and en-

suring that the formulations developedare at least locally optimal. Another

benefit of the equilibrium programmingframework is that the developergains

the new perspectiveof viewing the designprocessas consistingof a number

of interacting subproblems,eachpursuing their own goalsand in needof co-

ordination for developmentof satisfactory designs. Further enhancementsto

computational efficiencyby exploiting parallel solutions of thesesubproblems

are implied in the presentdissertation, but no parallel implementationswere

attempted. The work on asynchronoussolution of equilibrium programming

problemscited in the literature may prove useful in exploiting parallel com-

putation. However,much additional work is necessaryfor the developmentof

viable parallel solution schemes.
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